【題目】如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,BD,若AD=AC=AB,則下列結(jié)論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】D
【解析】
首先證明△AEC≌△BED,得到AC=BD=AB=AD,得到△ABD是等邊三角形,③正確;根據(jù) ABE與 CDE都是等腰直角三角形,得到∠CAB=∠CAD=30°∠CAE=∠EAD=15°得到①②正確; ABC,CAD為等腰三角形,頂角都為30°,得到∠ACB=∠ABC=75°,∠ACD=∠ADC=75°,得出∠BCD的度數(shù)為150°④正確
解:∵ ABE與 CDE都是等腰直角三角形
∴AE=BE, DE=CE
∵∠AEB=∠DEC=90°
∴∠AEC=∠DEB
∴△AEC≌△BED
∴AC=BD
∵AD=AC=AB
∴AD=BD=AB
∴② ABD是等邊三角形正確
∴∠ABD=∠BAD=∠ADB=60°
∵ ABE與 CDE都是等腰直角三角形
∴∠EAB=∠ABE=45°
∴∠CAB=30°,∠CAE=∠EAD=15°
∴AE為∠CAD的角平分線
∵ ABD為等腰三角形
∴①AE垂直平分CD正確
∴∠CAD=30°
∴②AC平分∠BAD正確
∵ ABC為等腰三角形,頂角∠BAC=30°
∴∠ACB=∠ABC=75°
同理∠ACD=∠ADC=75°
∴④∠BCD的度數(shù)為150°正確.
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形BEFG的邊BG在正方形ABCD的邊BC上,連結(jié)AG,EC.
(1)說出AG與CE的大小關(guān)系;
(2)圖中是否存在通過旋轉(zhuǎn)能夠相互重合的兩個(gè)三角形?若存在,請?jiān)敿?xì)寫出旋轉(zhuǎn)過程;若不存在,請說明理由.
(3)請你延長AG交CE于點(diǎn)M,判斷AM與CE的位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天水市某中學(xué)為了解學(xué)校藝術(shù)社團(tuán)活動(dòng)的開展情況,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生,在“舞蹈、樂器、聲樂、戲曲、其它活動(dòng)”項(xiàng)目中,圍繞你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))進(jìn)行了問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)在這次調(diào)查中,一共抽查了 名學(xué)生.
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中喜歡“樂器”部分扇形的圓心角為 度.
(4)請根據(jù)樣本數(shù)據(jù),估計(jì)該校1200名學(xué)生中喜歡“舞蹈”項(xiàng)目的共多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形斜邊上的中線把直角三角形分成的兩個(gè)三角形的關(guān)系是( 。
A. 形狀相同 B. 周長相等 C. 面積相等 D. 全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個(gè)主題選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,選擇“愛國”主題所對(duì)應(yīng)的圓心角是多少;
(4)如果該校九年級(jí)共有1200名學(xué)生,請估計(jì)選擇以“友善”為主題的九年級(jí)學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的“等角分割線”.
例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條“等角分割線”.
(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD為△ABC的“等角分割線”;
(2)如圖2,△ABC中,∠C=90°,∠B=30°;
①畫出△ABC的“等角分割線”,寫出畫法并說明理由;
②若BC=3,求出①中畫出的“等角分割線”的長度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( )
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,點(diǎn)P在邊AB上,沿著PC折疊紙片使B點(diǎn)落在邊AD上的E點(diǎn)處,過點(diǎn)E作EF∥AB交PC于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)若tan∠BCP=,AB=3cm,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com