【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個(gè)數(shù)為( )
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線的頂點(diǎn)坐標(biāo)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
①圖象開口向下,與y軸交于負(fù)半軸,對(duì)稱軸在y軸右側(cè),能得到:a<0,c<0,
∴ac>0,故①正確;
②當(dāng)x=1時(shí),y>0,∴a+b+c>0,故②錯(cuò)誤;
③當(dāng)x=-2時(shí),y<0,∴4a-2b+c<0,故③正確;
④∵對(duì)稱軸x=-<1,
∴2a+b<0,故④正確;
⑤∵拋物線的頂點(diǎn)在x軸的上方,
∴<1,
∵4a<0,
∴4ac-b2>4a,故⑤錯(cuò)誤;
⑥∵2a+b>0,
∴2a+b-a>-a,
∴a+b>-a,
∵a<0,
∴-c>0,
∴a+b>0,故⑥正確;
綜上所述正確的個(gè)數(shù)為4個(gè),
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(﹣3,2),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)請(qǐng)直接寫出y1<y2時(shí)x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中有一梯形ABCO,頂點(diǎn)C在x正半軸上,A、B兩點(diǎn)在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.點(diǎn)P在x軸上,從點(diǎn)(﹣2,0)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向正方向運(yùn)動(dòng);同時(shí),過(guò)點(diǎn)P作直線l,使直線l和x軸向正方向夾角為30°.設(shè)點(diǎn)P運(yùn)動(dòng)了t秒,直線l掃過(guò)梯形ABCO的面積為S掃.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)t=2秒時(shí),求S掃的值;
(3)求S掃與t的函數(shù)關(guān)系式,并求出直線l掃過(guò)梯形ABCO面積的時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過(guò)點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過(guò)A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸上.
(1)求的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E點(diǎn),設(shè)線段PE的長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為,求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=的圖象與直線y=x+1交于點(diǎn)A(1,a).
(1)求a,k的值;
(2)連結(jié)OA,點(diǎn)P是函數(shù)y=上一點(diǎn),且滿足OP=OA,直接寫出點(diǎn)P的坐標(biāo)(點(diǎn)A除外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,一次函數(shù)y=kx﹣b與正比例函數(shù)y=x(k,b是常數(shù),且kb≠0)的大致圖象不正確的是( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com