(2005•威海)如圖,梯形紙片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6,將紙片折疊,使點B與點D重合,折痕為AE,則CE=   
【答案】分析:根據(jù)翻轉(zhuǎn)不變性,找到全等的三角形,以此確定四邊形ABED為平行四邊形,然后解答.
解答:解:連接DE.
因為兩個三角形能夠完全重合,故△ABE≌△ADE,
∴∠BAE=∠DAE,∠BEA=∠DEA.
又∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠DEA,
∴AB∥DE,
∴四邊形ABED是平行四邊形,
∴是BE=AD,
∵AD=2,
∴BE=2,
∴CE=BC-BE=6-2=4.
故答案為:4.
點評:本題考查了平行四邊形的性質(zhì),綜合利用了三角形全等的知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(05)(解析版) 題型:填空題

(2005•威海)如圖,梯形紙片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6,將紙片折疊,使點B與點D重合,折痕為AE,則CE=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(15)(解析版) 題型:解答題

(2005•威海)如圖,AF⊥CE,垂足為點O,AO=CO=2,EO=FO=1.
(1)求證:點F為BC的中點;
(2)求四邊形BEOF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2005•威海)如圖,梯形紙片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6,將紙片折疊,使點B與點D重合,折痕為AE,則CE=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2005•威海)如圖所示,在圖甲中,Rt△OAB繞其直角頂點O每次旋轉(zhuǎn)90°,旋轉(zhuǎn)三次得到右邊的圖形.在圖乙中,四邊形OABC繞O點每次旋轉(zhuǎn)120°,旋轉(zhuǎn)二次得到右邊的圖形.下列圖形中,不能通過上述方式得到的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案