【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1;寫出點△A1,B1,C1的坐標(biāo)(直接寫答案):A1 ;B1 ;C1 ;
(2)△A1B1C1的面積為 ;
(3)在y軸上畫出點P,使PB+PC最小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)求二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:分子、分母都是整式,并且分母中含有未知數(shù)的不等式叫做分式不等式.小亮在解分式不等式時,是這樣思考的:根據(jù)“兩數(shù)相除,同號得正,異號得負(fù)”,原分式不等式可轉(zhuǎn)化為下面兩個不等式組:①或②
解不等式組①,得x>3,
解不等式組②,得.
所以原分式不等式的解集為x>3或.
探究:請你參考小亮思考問題的方法,解不等式.
應(yīng)用:不等式(x﹣3)(x+5)≤0的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.
(1)求證:ADBC=APBP.
(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:
如圖3,在△ABD中,AB=12,AD=BD=10.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和25,則△EDF的面積為( )
A. 35B. 25C. 15D. 12.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長為2的正三角形ABO的邊OB在x軸上,將△ABO繞原點O逆時針旋轉(zhuǎn)30°得到三角形OA1B1 , 則點A1的坐標(biāo)為( )
A.( ,1)
B.( ,-1)
C.(-1, )
D.(2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等邊三角形.
(1)如圖,點D在AB邊上,點E在AC邊上,BD=CE,BE與CD交于點F.試判斷BF與CF的數(shù)量關(guān)系,并加以證明;
(2)點D是AB邊上的一個動點,點E是AC邊上的一個動點,且BD=CE,BE與CD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明將兩塊完全相同的直角三角形紙片的直角頂點C疊放在一起,若保持△BCD不動,將△ACE繞直角頂點C旋轉(zhuǎn).
(1)如圖1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:______(填寫“是”或“否”);
(2)如圖1,若∠DCE=35,則∠ACB=______;若∠ACB=140,則∠DCE=______;
(3)當(dāng)△ACE繞直角頂點C旋轉(zhuǎn)到如圖1的位置時,猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由;
(4)當(dāng)△ACE繞直角頂點C旋轉(zhuǎn)到如圖2的位置時,上述關(guān)系是否依然成立,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com