【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處,此時(shí)△ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出∠APB=__________;
(2)基本運(yùn)用
請(qǐng)你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn)且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點(diǎn)O為Rt△ABC內(nèi)一點(diǎn),連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
【答案】(1)150°;(2)EF2=BE2+FC2.(3).
【解析】
(1)由△ACP′≌△ABP可得旋轉(zhuǎn)角∠PAP′=60°,可得△APP′為等邊三角形,根據(jù)勾股定理逆定理可證明△PP′C為直角三角形,根據(jù)∠APB=∠AP′C=∠AP′P+∠PP′C即可得答案;(2)如圖2,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACE′,由旋轉(zhuǎn)的性質(zhì)可得AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,根據(jù)角的和差關(guān)系可得∠EAF=∠E′AF,利用SAS可證明△EAF≌△E′AF,可得E′F=EF,根據(jù)等腰直角三角形的性質(zhì)可得∠E′CF=90°,根據(jù)勾股定理即可得結(jié)論;(3)如圖3,將△AOB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°至△A′O′B處,連接OO′,根據(jù)含30°角的直角三角形的性質(zhì)及勾股定理可求出AB、BC的長(zhǎng),根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠A′BC=90°,△BOO′是等邊三角形,由∠AOC=∠COB=∠BOA=120°,利用平角的定義可證明C、O、A′、O′四點(diǎn)共線,利用勾股定理求出A′C的長(zhǎng)即可得答案.
(1)∵△ACP′≌△ABP,
∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,
由題意知旋轉(zhuǎn)角∠PAP′=60°,
∴△APP′為等邊三角形,
∴P′P=AP=3,∠AP′P=60°,
∵P′C=PB=4,PC=5,
∴PC2=P′C2+P′P2,
∴△PP′C為直角三角形,且∠PP′C=90°,
∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°.
故答案為:150°
(2)如圖2,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACE′,
由旋轉(zhuǎn)的性質(zhì)得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,
∵∠EAF=45°,
∴∠E′AF=∠EAE′-∠EAF=45°,
∴∠EAF=∠E′AF,
在△EAF和△E′AF中,
∴△EAF≌△E′AF(SAS),
∴E′F=EF,
∵∠CAB=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CF=45°+45°=90°,
由勾股定理得,E′F2=CE′2+FC2,
即EF2=BE2+FC2.
(3)如圖3,將△AOB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°至△A′O′B處,連接OO′,
∵在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,
∴AB=2,
∴BC=,
∵△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,∠ABC=30°,
∴∠A′BC=∠ABC+60°=30°+60°=90°,
∵∠C=90°,AC=1,∠ABC=30°,
∴AB=2AC=2,
∵△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO,
∴△BOO′是等邊三角形,
∴BO=OO′,∠BOO′=∠BO′O=60°,
∵∠AOC=∠COB=∠BOA=120°,
∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,
∴C、O、A′、O′四點(diǎn)共線,
在Rt△A′BC中,A′C=,
∴OA+OB+OC=A′O′+OO′+OC=A′C=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(x1,y1)、B(x2,y2)都在某函數(shù)圖象上,且當(dāng)x1<x2<0時(shí),y1>y2,則此函數(shù)一定不是( 。
A. B. y=﹣2x+1 C. y=x2﹣1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣4,4),點(diǎn)B的坐標(biāo)為(0,2).
(1)求直線AB的解析式;
(2)如圖,以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線AC交x軸于點(diǎn)C,射線AD交y軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn),且點(diǎn)C在x軸的負(fù)半軸上,點(diǎn)D在y軸的負(fù)半軸上時(shí),OC﹣OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=100°,AC=AE,BC=BD,則∠DCE的度數(shù)為
A. 20° B. 25° C. 30° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形的長(zhǎng)為15,寬為10,高為20,點(diǎn)離點(diǎn)的距離為5,螞蟻如果要沿著長(zhǎng)方形的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是( )
A.35B.C.25D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,A是切點(diǎn),B是⊙O上一點(diǎn),且PA=PB,延長(zhǎng)BO分別與⊙O、切線PA相交于C、Q兩點(diǎn).
(1)求證:PB是⊙O的切線;
(2)QD為PB邊上的中線,若AQ=4,CQ=2,求QD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,∠D=2∠A.
(1)求證:CD是⊙O的切線;
(2)求證:DE=DC;
(3)若OD=5,CD=3,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com