【題目】某段筆直的限速公路上,規(guī)定汽車的最高行駛速度不能超過60km/h(即m/s),交通管理部門在離該公路100m處設(shè)置了一速度檢測點A,在如圖所示的坐標系中,A位于y軸上,測速路段BC在x軸上,點B在A的北偏西60°方向上,點C在點A的北偏東45°方向上.
(1)在圖中直接標出表示60°和45°的角;
(2)寫出點B、點C坐標;
(3)一輛汽車從點B勻速行駛到點C所用時間為15s.請你通過計算,判斷該汽車在這段限速路上是否超速?(本小問中取1.7)
【答案】(1)∠OAB=60°,∠OAC=45°;(2)C的坐標是(100,0);(3)該汽車在這段限速路上超速了.
【解析】分析:(1)根據(jù)方向角的定義即可表示60°和45°的角;
(2)已知OA=100m,求B、C的坐標就是求OB、OC的長度,可以轉(zhuǎn)化為解直角三角形;
(3)先求出BC的長,除以時間就得到汽車的速度,再與60km/h(即m/s)比較就可以判斷是否超速.
詳解:(1)如圖所示,∠OAB=60°,∠OAC=45°;
(2)∵在直角三角形ABO中,AO=100,∠BAO=60度,∴OB=OAtan60°=100,∴點B的坐標是(﹣100,0);
∵△AOC是等腰直角三角形,∴OC=OA=100,∴C的坐標是(100,0);
(3)BC=BO+OC=100+100≈270(m).
270÷15=18(m/s).
∵18>,∴該汽車在這段限速路上超速了.
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于線段和點,當,且時,稱點為線段的“等距點”.特別地,當,且時,稱點為線段的“強等距點”.在平面直角坐標系中,點的坐標為.
(1)有4個點:,,,.線段的“等距點”是 ;其中線段的“強等距點”是 .
(2)設(shè)第四象限有一點,點是線段的“強等距點”.
①當時,求點的坐標;
②當點又為線段的“等距點”時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點P是邊AB上的一動點,連接DP,
(1)若將△DAP沿DP折疊,點A落在矩形的對角線上點A處,試求AP的長;
(2)點P運動到某一時刻,過點P作直線PE交BC于點E,將△DAP與△PBE分別沿DP與PE折疊,點A與點B分別落在點A,B處,若P,A,B三點恰好在同一直線上,且AB=2,試求此時AP的長.
(3)當點P運動到邊AB的中點處時,過點P作直線PG交BC于點G,將△DAP與△PBG分別沿DP與PG折疊,點A與點B重合于點F處,請直接寫出F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高 米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, ,將直角三角板的直角頂點與邊的中點重合,直角三角板繞著點旋轉(zhuǎn),兩條直角邊分別交邊于,則的最小值是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)y=﹣x+5的圖象與函數(shù)y=(k<0)的圖象相交于點A,并與x軸交于點C,S△AOC=15.點D是線段AC上一點,CD:AC=2:3.
(1)求k的值;
(2)根據(jù)圖象,直接寫出當x<0時不等式>﹣x+5的解集;
(3)求△AOD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;
(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校現(xiàn)有九年級學生800名,為了了解這些學生的體質(zhì)健康情況,學校在開學初從中隨機抽取部分學生進行體能測試(測試結(jié)果分成優(yōu)秀、良好、合格、不合格四個等級),并將測試結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息解答下列問題:
(1)本次抽取的學生人數(shù)共有____名,在扇形統(tǒng)計圖中,“合格”等級所對應的圓心角的度數(shù)是______;
(2)補全條形統(tǒng)計圖;
(3)估計九年級學生中達到“合格”以上(含合格)等級的學生一共有多少名?
(4)若抽取的學生中,恰好有九年級(1)班的2名男生,2名女生,現(xiàn)要從這4人中隨機抽取2人擔任組長工作,請用列表法或樹狀圖法求所抽取的2名學生中至少有1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com