【題目】如圖是拋物線形的拱橋,當(dāng)拱頂離水面3m時,水面寬6m

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式;

(2)如果水面上升1m,則水面寬度減少多少米?

【答案】1;(2)水面寬度減少米.

【解析】

1)根據(jù)頂點坐標(biāo)(3,3),設(shè)拋物線為,再將點(0,0)代入解析式,求出,即可得到函數(shù)解析式;

2)由(1)可得函數(shù)的解析式,可求出上漲1米,即y=1時,x的取值即可;

解:(1)由題意可知,拋物線與x軸的交點為:(00)和(6,0),其頂點坐標(biāo)為(3,3),

設(shè)這條拋物線為:,

將點(0,0)代入解析式得,,解得,

∴拋物線的解析式為:

2)由(1)可得函數(shù)的解析式為:,

y=1代入得,,

解得,,

則水面寬度減少米;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1RtABC中,∠ACB90°,點DAB邊上的動點(點D不與點A,點B重合),過點DEDCD交直線AC于點E,已知∠A30°,AB4cm,在點D由點A到點B運動的過程中,設(shè)ADxcmAEycm

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小東的探究過程,請補(bǔ)充完整:

1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

1

2

3

y/cm

0.4

0.8

1.0

   

1.0

0

4.0

(說明:補(bǔ)全表格時相關(guān)數(shù)值保留一位小數(shù))

2)在如圖2的平面直角坐標(biāo)系xOy中,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AEAD時,AD的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛轎車在經(jīng)過某路口的感應(yīng)線BC處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應(yīng)線之間距離BC6.2m,在感應(yīng)線B、C兩處測得電子警察A的仰角分別為∠ABD45°,∠ACD28°.求電子警察安裝在懸臂燈桿上的高度AD的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin28°0.47cos28°0.88,tan28°0.53

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)道路管理規(guī)定,在廣州某段筆直公路上行駛的車輛,限速40千米/時;已知交警測速點到該公路點的距離為米,,(如圖所示),現(xiàn)有一輛汽車由方向勻速行駛,測得此車從點行駛到點所用的時間為2秒.

1)求測速點到該公路的距離.

2)通過計算判斷此車是否超速.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣10)、E3,0)兩點,與y軸交于點B0,3).

1)求拋物線的解析式;

2)設(shè)拋物線頂點為D,求四邊形AEDB的面積;

3△AOB△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、BC、O在數(shù)軸上表示的數(shù)分別為a、b、c0,且OA+OBOC,則下列結(jié)論中:其中正確的有( 。

abc0

ab+c)=0

acb

=﹣1

A.①③④B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1:在四邊形ABC中,ABAD,∠B=∠ADC90°,EF分別是BC、CD上的點,且EFBE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是:延長FD到點G,使DGBE.連接AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   

2)如圖2,若在四邊形ABCD中,ABAD,∠B+D180°E、F分別是BC、CD上的點,且EFBE+FD,上述結(jié)論是否仍然成立,并說明理由;

3)如圖3,已知在四邊形ABCD中,∠ABC+ADC180°ABAD,若點ECB的延長線上,點FCD的延長線上,如圖3所示,仍然滿足EFBE+FD,請寫出∠EAF與∠DAB的數(shù)量關(guān)系,并給出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進(jìn)取主題班會活動,活動后,就活動的個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計圖補(bǔ)充完整,并在扇形統(tǒng)計圖中計算出進(jìn)取所對應(yīng)的圓心角的度數(shù).

(3)如果要在這個主題中任選兩個進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

同步練習(xí)冊答案