如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

【答案】分析:(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即據(jù)SAS可證得△BPD≌△CQP.
(2)可設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等,則可知PB=3tcm,PC=8-3tcm,CQ=xtcm,據(jù)(1)同理可得當BD=PC,BP=CQ或BD=CQ,BP=PC時兩三角形全等,求x的解即可.
解答:解:(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,
∵△ABC中,AB=AC,
∴∠ABC=∠ACB,且BD=PC,BP=CQ,
∴△BPD≌△CQP(SAS).

(2)設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等;則可知PB=3tcm,PC=8-3tcm,CQ=xtcm,
∵AB=AC,
∴∠B=∠C,
根據(jù)全等三角形的判定定理SAS可知,有兩種情況:①當BD=PC,BP=CQ時,②當BD=CQ,BP=PC時,兩三角形全等;
①當BD=PC且BP=CQ時,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情況;
②BD=CQ,BP=PC時,5=xt且3t=8-3t,解得:x=;
故若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為cm/s時,能夠使△BPD與△CQP全等.
點評:本題主要考查了全等三角形全等的判定,涉及到等腰三角形的性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習冊答案