【題目】已知平行四邊形的一邊長為10,則對角線的長度可能取下列數(shù)組中的( ).

A.4、8B.1032C.8、10D.11、13

【答案】D

【解析】

依題意畫出圖形,由四邊形ABCD是平行四邊形,得OA=AC,OB=BD,又由AB=10,利用三角形的三邊關系,即可求得答案.

解:∵四邊形ABCD是平行四邊形,

OA=AC,OB=BD

AB=10,

對選項A,∵AC=4,BD=8,

OA=2,OB=4,

OA+OB=610,

∴不能組成三角形,

故本選項錯誤;

對選項B,∵AC=10,BD=32

OA=5,OB=16

OA+AB=15<16,

∴不能組成三角形,

故本選項錯誤;

對選項C,∵AC=8,BD=10,

OA=4,OB=5

OA+OB=910,

∴不能組成三角形,

故本選項錯誤;

對選項D,∵AC=11,BD=13,

OA=5.5,OB=6.5,

OA+OB=1210,

∴能組成三角形,

故本選項正確.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB中,OA=OB=10cm,AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧弧MN分別交OA,OB于點M,N.

(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°OP′.求證:AP=BP′;

(2)點T在左半弧上,若AT與弧相切,求AT的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,CPQ的面積為S.

①求S關于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側(cè),DEAB,垂足為E,DE的延長線交此圓于點F.BGAD,垂足為G,BGDE于點H,DC,F(xiàn)B的延長線交于點P,且PC=PB.

(1)求證:BGCD;

(2)設△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點延長線上一點且,連接,在上截取,使,過點平分,,分別交于點、.連接.

(1)若,求的長;

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設運動時間為x秒,PBQ的面積為y(cm2).

(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;

(2)求PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一組數(shù)據(jù),,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,,,的方差是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:則下列說法錯誤的是( 。

x

-1

0

1

2

3

y

A. 二次函數(shù)圖像與x軸交點有兩個

B. x≥2時y隨x的增大而增大

C. 二次函數(shù)圖像與x軸交點橫坐標一個在-1~0之間,另一個在2~3之間

D. 對稱軸為直線x=1.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

同步練習冊答案