1.問(wèn)題1 已知:如圖1,三角形ABC中,點(diǎn)D是AB邊的中點(diǎn),AE⊥BC,BF⊥AC,垂足分別為點(diǎn)E,F,AE,BF交于點(diǎn)M,連接DE,DF.若DE=DF,則的值為_____.
2.拓展
問(wèn)題2 已知:如圖2,三角形ABC中,CB=CA,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)M在三角形ABC的內(nèi)部,且∠MAC=∠MBC,過(guò)點(diǎn)M分別作ME⊥BC,MF⊥AC,垂足分別為點(diǎn)E,F,連接DE,DF.求證:DE=DF.
3.推廣
問(wèn)題3 如圖3,若將上面問(wèn)題2中的條件“CB=CA”變?yōu)椤?i>CB≠CA”,其他條件不變,試探究DE與DF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
1.的值為 1
2.證明:如圖9.
∵CB=CA,
∴∠CAB=∠CBA.
∵∠MAC=∠MBC,
∴∠CAB-∠MAC=∠CBA-∠MBC,
即∠MAB=∠MBA.
∴MA=MB.
∵ME⊥BC,MF⊥AC,垂足分別為點(diǎn)E,F,
∴∠AFM=∠BEM=90°.
在△AFM與△BEM中,
∠AFM=∠BEM,
∠MAF =∠MBE,
MA=MB,
∴△AFM≌△BEM.
∵點(diǎn)D是AB邊的中點(diǎn),
∴BD = AD.
在△BDE與△ADF中,
BD = AD,
∠DBE =∠DAF,
BE = AF,
∴△BDE≌△ADF.
∴DE=DF.
3.解:DE=DF.
證明:分別取AM,BM的中點(diǎn)G,H,連接DG,FG,DH,EH.(如圖10)
∵點(diǎn)D,G,H分別是AB,AM,BM的中點(diǎn),
∴DG∥BM,DH∥AM,且DG=BM,DH=AM.
∴四邊形DHMG是平行四邊形.
∴∠DHM =∠DGM,
∵ME⊥BC,MF⊥AC,垂足分別為點(diǎn)E,F,
∴∠AFM=∠BEM=90°.
∴FG=AM= AG,EH=BM= BH.
∴FG= DH,DG= EH, ∠GAF =∠GFA,∠HBE =∠HEB.
∴∠FGM =2∠FAM,∠EHM =2∠EBM.
∵∠FAM=∠EBM,
∴∠FGM =∠EHM.
∴∠DGM+∠FGM =∠DHM+∠EHM,即∠DGF=∠DHE.
在△EHD與△DGF中,
EH = DG,
∠EHD =∠DGF,
HD = GF,
∴△EHD≌△DGF.
∴DE=DF.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012年內(nèi)蒙古赤峰市升學(xué)、畢業(yè)統(tǒng)一考試模擬數(shù)學(xué)試卷 題型:解答題
在一堂數(shù)學(xué)課中,數(shù)學(xué)老師給出了如下問(wèn)題“已知:如圖①,在四邊形ABCD中,AB=AD,∠B=∠D.求證:CB=CD”.文文和彬彬都想到了利用輔助線把四邊形的問(wèn)題轉(zhuǎn)化為三角形來(lái)解決.
1.文文同學(xué)證明過(guò)程如下:連結(jié)AC(如圖②)
∵∠B=∠D ,AB=AD,AC=AC
∴△ABC≌△ADC,∴CB=CD
你認(rèn)為文文的證法是 的.(在橫線上填寫“正確”或“錯(cuò)誤”)
2.彬彬同學(xué)的輔助線作法是“連結(jié)BD”(如圖③),請(qǐng)完成彬彬同學(xué)的證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年內(nèi)蒙古九年級(jí)第二次模擬考試數(shù)學(xué)卷 題型:解答題
(本題10分)在一堂數(shù)學(xué)課中,數(shù)學(xué)老師給出了如下問(wèn)題“已知:如圖①,在四邊形ABCD中,AB=AD,∠B=∠D.求證:CB=CD”.文文和彬彬都想到了利用輔助線把四邊形的問(wèn)題轉(zhuǎn)化為三角形來(lái)解決.
1.(1)文文同學(xué)證明過(guò)程如下:連結(jié)AC(如圖②)
∵∠B=∠D ,AB=AD,AC=AC
∴△ABC≌△ADC,∴CB=CD
你認(rèn)為文文的證法是 的.(在橫線上填寫“正確”或“錯(cuò)誤”)
2.(2)彬彬同學(xué)的輔助線作法是“連結(jié)BD”(如圖③),請(qǐng)完成彬彬同學(xué)的證明過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com