【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:

定義:如果二次函數(shù)是常數(shù)與是常數(shù))滿(mǎn)足,則稱(chēng)這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.

求函數(shù)的 “旋轉(zhuǎn)函數(shù)”.

小明是這樣思考的:由函數(shù)可知a1=-1,b1=3,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.

請(qǐng)參考小明的方法解決下面的問(wèn)題:

(1)寫(xiě)出函數(shù)的“旋轉(zhuǎn)函數(shù)”;

(2)若函數(shù)互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2017的值;

(3)已知函數(shù)的圖象與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)分別是A1、B1、C1,試證明經(jīng)過(guò)點(diǎn)A1、B1C1的二次函數(shù)與函數(shù)互為“旋轉(zhuǎn)函數(shù)”.

【答案】(1);(2);(3)證明見(jiàn)解析

【解析】解:(1)由函數(shù)可知,

∴函數(shù)的“旋轉(zhuǎn)函數(shù)”是

(2)函數(shù)互為“旋轉(zhuǎn)函數(shù)”

(3)數(shù)的圖象與軸交于兩點(diǎn),與軸交于點(diǎn)

得過(guò)點(diǎn)的二次函數(shù)是

=

經(jīng)過(guò)點(diǎn)的二次函數(shù)與函數(shù)互為旋轉(zhuǎn)函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將三角形ABC沿DE折疊,使點(diǎn)A落在BC上的點(diǎn)F處,且DE∥BC,若∠B=70,則∠BDF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y關(guān)于 x的函數(shù)y=m2+2mx2+mx+m+1.

1)當(dāng)m為何值時(shí),此函數(shù)是一次函數(shù)?

2)當(dāng)m為何值時(shí),此函數(shù)是二次函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是矩形ABCD對(duì)角線的交點(diǎn),AE平分∠BAD,∠AOD=120°,則∠AEO= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程中,有兩個(gè)不相等的實(shí)數(shù)根的是 ( )

A. x2+20B. x120C. x2+2x10D. x2+x+50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出一個(gè)一元一次方程:_____________,它的解是x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定 的條件有( )個(gè).

; ②
; ④ .
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5名同學(xué)進(jìn)行體育測(cè)驗(yàn),成績(jī)分別是7080,857585(單位:分),這次體育測(cè)驗(yàn)成績(jī)的眾數(shù)和中位數(shù)分別是( 。

A. 79分,85B. 80分,79C. 85分,80D. 85分,85

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(2)班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?0分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9


(1)甲隊(duì)成績(jī)的中位數(shù)是分,乙隊(duì)成績(jī)的眾數(shù)是分;
(2)計(jì)算甲隊(duì)的平均成績(jī)和方差;
(3)已知乙隊(duì)成績(jī)的方差是1 ,則成績(jī)較為整齊的是哪一隊(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案