【題目】如圖,拋物線y1=ax2+2ax+1軸有且僅有一個公共點A,經(jīng)過點A的直線y2=kx+b交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.

(1)求的值

(2)求直線AB對應的函數(shù)解析式;

(3)直接寫出當y1 ≥y2 時,的取值范圍.

【答案】(1)a的值為1(2)直線AB的解析式為y=2x+2(3)當y1 ≥y2時,x的取值范圍為 x≥1或x≤-1

【解析】分析:根據(jù)拋物線軸有且僅有一個公共點,則,即可求出的值;

求得的坐標,用待定系數(shù)法即可求出直線AB對應的函數(shù)解析式;

結合兩個函數(shù)圖象可知當?shù)本在拋物線上方時可得到的解集.

詳解:(1)∵拋物線x軸有且僅有一個公共點A

解得a1=0(舍去),a2=1,

a的值為1.

(2)(1)得拋物線解析式為

∴頂點A的坐標為

∵點C是線段AB的中點, c的橫坐標為0,設B的橫坐標為m.

,

m=1.

B點的橫坐標為1,

∴當x=1時,

B(1,4),

A 代入 ,

解得:,

∴直線AB的解析式為

(3)時,x的取值范圍為 x≥1x≤-1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉行校園好聲音歌手大賽,根據(jù)初賽成績,初二和初三各選出5名選手組成初二代表隊和初三代表隊參加學校決賽。兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初二

85

初三

85

100

1)根據(jù)圖示填寫上表;

2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點A和點B,點CD分別為線段AB,OB的中點,點POA上一動點,PCPD值最小時點P的坐標為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】過點A0,2的直線l1:y1kxbk0與直線l2:y2x1交于點P2,m。

1)求點P的坐標和直線l1的解析式;

2)直接寫出使得y1y2x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②△OAE∽△OPA;③當正方形的邊長為3,BP=1時,cos∠DFO=其中正確結論的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點Pa,b和點Qa,b,給出如下定義:若,則稱點Q為點P的限變點,例如:點(2,3)的限變點的坐標是(2,3),點2,5的限變點的坐標是2,5

1)在點A2,1,B1,2中有一個點是函數(shù)y=圖象上某一個點的限變點,這個點是

2)求點,1的限變點的坐標;

3)若點P在函數(shù)yx32xk,k2的圖象上,其限變點Q的縱坐標b的取值范圍是5b2,求k的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:

1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是 環(huán),乙命中環(huán)數(shù)的眾數(shù)是 環(huán);

2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會 .(填 變大、變小 不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.學校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一門).對調(diào)查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:

(1)本次調(diào)查的學生共有   人,在扇形統(tǒng)計圖中,m的值是   ;

(2)將條形統(tǒng)計圖補充完整;

(3)在被調(diào)查的學生中,選修書法的有2名女同學,其余為男同學,現(xiàn)要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.

查看答案和解析>>

同步練習冊答案