【題目】如圖,在平面直角坐標(biāo)系中,直線l平行x軸,交y軸于點A,第一象限內(nèi)的點B在l上,連結(jié)OB,動點P滿足∠APQ=90°,PQ交x軸于點C.
(1)當(dāng)動點P與點B重合時,若點B的坐標(biāo)是(2,1),求PA的長.
(2)當(dāng)動點P在線段OB的延長線上時,若點A的縱坐標(biāo)與點B的橫坐標(biāo)相等,求PA:PC的值.
(3)在(2)的條件下,已知AB=3,OB:BP=3:1,求四邊形AOCP的面積.
【答案】(1)、PA=2;(2)、1:1;(3)、16.
【解析】
試題分析:(1)、根據(jù)點P與點B重合,得出PA的長度;(2)、過點P作PM⊥x軸,過點P作PN⊥y軸,根據(jù)點A的縱坐標(biāo)和點B的橫坐標(biāo)相等得出OA=OB,根據(jù)∠OAB=90°可得∠AOB=∠ABO=45°,結(jié)合角度之間的關(guān)系得出△ANP和△CMP全等得出PA=PC,從而得到比值;(3)、根據(jù)∠ANP=∠MON=∠OMP =90°得出四邊形OMPN為矩形,根據(jù)PM=PN得出四邊形OMPN為正方形,根據(jù)OA=AB=3,得出OB、BP、OP的長度,根據(jù)△ANP和△CMP全等得出四邊形的面積.
試題解析:(1)、∵點P與點B重合,點B的坐標(biāo)是(2,1), ∴點P的坐標(biāo)是(2,1). ∴PA的長為2.
(2)、過點P作PM⊥x軸,垂足為M,過點P作PN⊥y軸,垂足為N,如圖1所示
∵點A的縱坐標(biāo)與點B的橫坐標(biāo)相等, ∴OA=AB. ∵∠OAB=90°,
∴∠AOB=∠ABO=45° ∵∠AOC=90°, ∴∠POC=45° ∵PM⊥x軸,PN⊥y軸,
∴PM=PN,∠ANP=∠CMP=∠OMP =90° ∴∠NPM=90° ∵∠APC=90° ∴∠APN=90°﹣∠APM=∠CPM
在△ANP和△CMP中, ∵∠APN=∠CPM,PN=PM,∠ANP=∠CMP, ∴△ANP≌△CMP.
∴PA=PC. ∴PA:PC的值為1:1
(3)、∵∠ANP=∠MON=∠OMP =90° ∴四邊形OMPN為矩形 ∵PM=PN ∴四邊形OMPN為正方形
∵∠OAB=90°,OA=AB=3 ∴OB= ∵OB:BP=3:1 ∴BP= ∴OP=
∴正方形OMPN= ∵△ANP≌△CMP. ∴S△ANP≌S△CMP. ∴四邊形AOCO=正方形OMPN=16
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c的頂點坐標(biāo)為(1,﹣3),則拋物線對應(yīng)的函數(shù)解析式為( 。
A.y=x2﹣2x+2
B.y=x2﹣2x﹣2
C.y=﹣x2﹣2x+1
D.y=x2﹣2x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷不正確的是( ).
A.形狀相同的圖形是全等圖形
B.能夠完全重合的兩個三角形全等
C.全等圖形的形狀和大小都相同
D.全等三角形的對應(yīng)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果△ABC和△DEF全等,△DEF和△GHI全等,則△ABC和△GHI全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,則△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對某雷達(dá)測速區(qū)檢測到的一組汽車的時速數(shù)據(jù)進(jìn)行整理,得到其頻數(shù)及頻率如表(未完成):
時速數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | ___ |
50﹣60 | ___ | 0.39 |
60﹣70 | ___ | ___ |
70﹣80 | 20 | 0.10 |
總計 | 200 | 1 |
(1)請你把表中的數(shù)據(jù)填寫完整;
(2)補全頻數(shù)分布直方圖;
(3)如果汽車時速超過60千米即為違章,則這次檢測到的違章車輛共有 輛.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次實驗,實驗的結(jié)果如下:
(1)計算“3點朝上”的頻率和“5點朝上”的頻率;
(2)小穎說:“根據(jù)上述實驗,一次實驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次”,小穎和小紅的說法正確嗎?為什么?
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 7 | 9 | 6 | 8 | 20 | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若原產(chǎn)量為n噸,增產(chǎn)30%后的產(chǎn)量為( )
A. 30%n噸 B. (1﹣30%)n噸 C. (1+30%)n噸 D. (n+30%)噸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com