【題目】鞋子的鞋碼和鞋長(cm)存在一種換算關系,下表是幾組鞋碼與鞋長的對應數(shù)值:

鞋長

16

19

24

27

鞋碼

22

28

38

44

1)分析上表,鞋碼與鞋長之間的關系符合你學過的哪種函數(shù);

2)設鞋長為x,鞋碼y,求yx之間的函數(shù)關系式;

3)如果你需要的鞋長為26cm,那么應該買多大碼的鞋?

【答案】(1)一次函數(shù);(2y2x10;(3)應該買42碼的鞋.

【解析】

1)由表格可知,給出了四對對應值,鞋長每增加,鞋碼增加,即鞋碼與鞋長之間的關系是一次函數(shù)關系;

2)設,把表中任意兩對值代入即可求出的關系;

3)當時,代入函數(shù)關系式即可計算出鞋碼的值.

解:(1)根據(jù)表中信息得鞋碼與鞋長之間的關系是一次函數(shù);

2)設

則由題意得

解得:

;

3)當時,

答:應該買碼的鞋.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一輛汽車在直線形的公路AB上由A向B行駛,M,N分別是位于公路AB兩側的村莊.

(1)設汽車行駛到公路AB上點P位置時,距離村莊M最近;行駛到點Q位置時,距離村莊N最近.請在圖中的公路AB上分別畫出點P,Q的位置(保留畫圖痕跡).

(2)當汽車從A出發(fā)向B行駛時,在公路AB的哪一段路上距離M,N兩村莊都越來越近?在哪一段路上距離村莊N越來越近,而離村莊M卻越來越遠?(分別用文字表述你的結論,不必證明).

(3)到在公路AB上是否存在這樣一點H,使汽車行駛到該點時,與村莊M,N的距離相等?如果存在,請在圖中的AB上畫出這一點(保留畫圖痕跡,不必證明);如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉中心旋轉180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉可得到A2B2C2,請直接寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).

(1)求a的值和該拋物線頂點P的坐標;

(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1個單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,ABC的頂點都在格點上,請解答下列問題

1)畫出將ABC向左平移4個單位長度后得到的圖形A1B1C1,并寫出點C1的坐標;

2)畫出將ABC關于原點O對稱的圖形A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把二次函數(shù)y=a(x-h)2+k的圖象先向左平移2個單位,再向上平移4個單位,得到二次函數(shù)y= (x+1)2-1的圖象.

1試確定ah,k的值;

2指出二次函數(shù)y=a(x-h)2+k的開口方向,對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】朗讀者自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學開展朗讀比賽活動,九年級班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績滿分為100如圖所示.

平均數(shù)

中位數(shù)

眾數(shù)

85

85

80

根據(jù)圖示填寫表格;

結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;

如果規(guī)定成績較穩(wěn)定班級勝出,你認為哪個班級能勝出?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點P,點P在第一象限.PAx軸于點A,PBy軸于點B.一次函數(shù)的圖象分別交軸、軸于點C、D,且SPBD=4

1)求點D的坐標;

2)求一次函數(shù)與反比例函數(shù)的解析式;

3)根據(jù)圖象寫出當時,一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABCD,E是射線FD上的一點,∠ABC140°,∠CDF40°

1)試說明BCEF;

2)若∠BAE110°,連接BD,如圖2.若BDAE,則BD是否平分∠ABC,請說明理由.

查看答案和解析>>

同步練習冊答案