【題目】水龍頭關閉不嚴會造成滴水,容器內(nèi)盛水量w(L)與滴水時間t(h)的關系用可以顯示水量的容器做如圖1的試驗,并根據(jù)試驗數(shù)據(jù)繪制出如圖2的函數(shù)圖象,結(jié)合圖象解答下列問題.

(1)容器內(nèi)原有水多少升?
(2)求w與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?

【答案】
(1)解:根據(jù)圖象可知,t=0時,w=0.3,即容器內(nèi)原有水0.3升;
(2)解:設w與t之間的函數(shù)關系式為w=kt+b,

將(0,0.3),(1.5,0.9)代入,

解得 ,

故w與t之間的函數(shù)關系式為w=0.4t+0.3;

由解析式可得,每小時滴水量為0.4L,一天的滴水量為:0.4×24=9.6L,

即在這種滴水狀態(tài)下一天的滴水量是9.6升.


【解析】(1)根據(jù)圖象可知,t=0時,w=0.3,即容器內(nèi)原有水0.3升;(2)設w與t之間的函數(shù)關系式為w=kt+b,將(0,0.3),(1.5,0.9)代入,利用待定系數(shù)法求出w與t之間的函數(shù)關系式;計算即可求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】當﹣2≤x≤1時,二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實數(shù)m的范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設點Q到圖形W上每一個點的距離的最小值稱為點Q到圖形W的距離.例如正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點O(0,0)到正方形ABCD的距離為1.

(1)如果⊙P是以(3,4)為圓心,1為半徑的圓,那么點O(0,0)到⊙P的距離為
(2)求點M(3,0)到直線y=2x+1的距離;
(3)如果點N(0,a)到直線y=2x+1的距離為3,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=2x+a與y= (a≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有四張背面完全相同的卡片A,B,C,D,小偉將這四張卡片背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸出卡片所有可能出現(xiàn)的結(jié)果(卡片可用A,B,C,D表示);
(2)求摸出兩張卡片所表示的幾何圖形是軸對稱圖形而不是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元. 經(jīng)市場調(diào)研發(fā)現(xiàn):該款工藝品每天的銷售量y(件)與售價x(元)之間存在著如下表所示的一次函數(shù)關系.

售價x(元)

70

90

銷售量y(件)

3000

1000

(利潤=(售價﹣成本價)×銷售量)
(1)求銷售量y(件)與售價x(元)之間的函數(shù)關系式;
(2)你認為如何定價才能使工藝品廠每天獲得的利潤為40000元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1) ﹣1=
(2)2x2+3=7x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為全面開展“陽光大課間”活動,某中學三個年級準備成立“足球”、“籃球”、“跳繩”、“踢毽”四個課外活動小組,學校體育組根據(jù)七年級學生的報名情況(每人限報一項)繪制了兩幅不完整的統(tǒng)計圖(如圖),
請根據(jù)以上信息,完成下列問題:
(1)m= , n= , 并將條形統(tǒng)計圖補充完整;
(2)根據(jù)七年級的報名情況,試問全校2000人中,大約有多少人報名參加足球活動小組?
(3)根據(jù)活動需要,從“跳繩”小組的二男二女四名同學中隨機選取兩人到“踢毽”小組參加訓練,請用列表或樹狀圖的方法計算恰好選中一男一女兩名同學的概率.

查看答案和解析>>

同步練習冊答案