【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)
(1)求這條拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出點(diǎn)Q的坐標(biāo);若不存在說明理由;
【答案】
(1)解:拋物線的解析式為y=﹣(x﹣1)(x+3),即y=﹣x2﹣2x+3;
(2)解:存在.
當(dāng)x=0時(shí),y=﹣x2﹣2x+3=3,則C(0,3),
拋物線的對(duì)稱軸為直線x=﹣1,
連接BC交直線x=﹣1于Q,如圖,
∵點(diǎn)A與點(diǎn)B關(guān)于直線x=﹣1對(duì)稱,
∴QA=QB,
∴QA+QC=QB+QC=BC,
∴此時(shí)QA+QC的值最小,
∴此時(shí)△QAC的周長(zhǎng)最小,
設(shè)直線BC的解析式為y=kx+b,
把B(﹣3,0),C(0,3)代入得 ,解得 ,
∴直線BC的解析式為y=x+3,
當(dāng)x=﹣1時(shí),y=x+3=2,
∴滿足條件的Q點(diǎn)的坐標(biāo)為(﹣1,2);
;(3)(1)中拋物線在第二象限的圖象是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC面積的最大值;若不存在,請(qǐng)說明理由.
解:存在.
過PD∥y軸交BC于P,如圖,
設(shè)P(x,﹣x2﹣2x+3)(﹣3<x<0),則D(x,x+3),
∴PD=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,
∴S△PBC=S△PBD+S△PCD= 3PD=﹣ x2﹣ x=﹣ (x+ )2+ ,
當(dāng)x=﹣ 時(shí),S△PBC值最大,最大值為 ,
此時(shí)P點(diǎn)坐標(biāo)為(﹣ , ).
【解析】(1)利用交點(diǎn)式可直接得到拋物線的解析式;(2)先確定C(0,3),拋物線的對(duì)稱軸為直線x=﹣1,連接BC交直線x=﹣1于Q,如圖,利用兩點(diǎn)之間線段最短解決最短路徑問題得到此時(shí)QA+QC的值最小,從而確定此時(shí)△QAC的周長(zhǎng)最小,再利用待定系數(shù)法求出直線BC的解析式為y=x+3,然后計(jì)算自變量為﹣1時(shí)的一次函數(shù)值即可得到滿足條件的Q點(diǎn)的坐標(biāo);(3)過PD∥y軸交BC于P,如圖,設(shè)P(x,﹣x2﹣2x+3)(﹣3<x<0),則D(x,x+3),則PD可表示為﹣x2﹣3x,利用三角形面積公式得到S△PBC=﹣ x2﹣ x,然后利用二次函數(shù)的性質(zhì)求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將1, , , 按下列方式排列.若規(guī)定(m,n)表示第m排從左向右第n個(gè)數(shù),則(5,4)與(15,2)表示的兩數(shù)之積是 _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)能自由轉(zhuǎn)動(dòng)的正六邊形轉(zhuǎn)盤,這個(gè)轉(zhuǎn)盤被三條分割線分成形狀相同,面積相等的三部分,且分別標(biāo)有“1”、“2”、“3”三個(gè)數(shù)字,指針的位置固定不動(dòng),讓轉(zhuǎn)盤自由轉(zhuǎn)動(dòng)兩次,當(dāng)每次轉(zhuǎn)盤停止后,記錄指針指向的數(shù)(當(dāng)指針指向分割線時(shí),視其指向分割線左邊的區(qū)域),則兩次指針指向的數(shù)都是奇數(shù)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)現(xiàn)有學(xué)生2870人,學(xué)校為了進(jìn)一步豐富學(xué)生課余生活,擬調(diào)整興趣活動(dòng)小組,為此進(jìn)行了一次抽樣調(diào)查,根據(jù)采集到的數(shù)據(jù)繪制的統(tǒng)計(jì)圖(不完整)如下:
請(qǐng)你根據(jù)圖中提供的信息,完成下列問題:
(1)圖1中,“電腦”部分所對(duì)應(yīng)的圓心角為 _________ 度;
(2)共抽查了 _________ 名學(xué)生;
(3)在圖2中,將“體育”部分的圖形補(bǔ)充完整;
(4)愛好“書畫”的人數(shù)占被調(diào)查人數(shù)的百分比 _________;
(5)估計(jì)現(xiàn)有學(xué)生中,有 _________ 人愛好“書畫”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解“停車難”的問題,某單位擬造地下停車庫,建筑設(shè)計(jì)師提供了該地下停車庫的設(shè)計(jì)示意圖如圖所示,已知該坡道的水平距離AB的長(zhǎng)為9m,坡面AD與AB的夾角∠BAD=18°,石柱BC=0.5m,按規(guī)定,地下停車庫坡道上方BC處要張貼限高標(biāo)志,以便告知停車人車輛能否安全駛?cè)耄?qǐng)你幫設(shè)計(jì)師計(jì)算一下CE的高度,以便張貼限高標(biāo)志,結(jié)果精確到0.1m.
(參考數(shù)值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠ABC=3∠C,∠BAC的平分線AD交BC于D,BE⊥AD于E.
(1)如圖l,求證:AC﹣AB=2BE.
(2)如圖2,將∠DCA沿直線AC翻折,交BA的延長(zhǎng)線于點(diǎn)M,連接MD交AC于點(diǎn)N;MA=BA,BE=1,AB=,求AN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動(dòng)陽光體育運(yùn)動(dòng)的廣泛開展,引導(dǎo)學(xué)生走向操場(chǎng),積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為______,圖①中的值為_____;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為______,中位數(shù)為________;
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買200雙運(yùn)動(dòng)鞋,建議購(gòu)買35號(hào)運(yùn)動(dòng)鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,﹣ ),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A、B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請(qǐng)說明理由;
(3)以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A. 如果三角形三個(gè)角的度數(shù)比是3:4:5,那么這個(gè)三角形是直角三角形
B. 如果直角三角形兩直角邊的長(zhǎng)分別為a和b,那么斜邊的長(zhǎng)為a2+b2
C. 若三角形三邊長(zhǎng)的比為1:2:3,則這個(gè)三角形是直角三角形
D. 如果直角三角形兩直角邊分別為a和b,斜邊為c,那么斜邊上的高h的長(zhǎng)為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com