如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
①設(shè)△PDE的周長為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
(1);
(2)①x=﹣3時(shí),l最大=15;
②點(diǎn)P有三個(gè),分別是P1,2),P2,2),P3).

試題分析:(1)利用待定系數(shù)法求出b,c即可;
(2)①根據(jù)△AOM∽△PED,得出DE:PE:PD=3:4:5,再求出PD=yP﹣yD求出二函數(shù)最值即可;
②當(dāng)點(diǎn)G落在y軸上時(shí),由△ACP≌△GOA得PC=AO=2,即,解得
所以得出P點(diǎn)坐標(biāo),當(dāng)點(diǎn)F落在y軸上時(shí),,解得,可得P點(diǎn)坐標(biāo).
試題解析:(1)對(duì)于,當(dāng)y=0,x=2.當(dāng)x=﹣8時(shí),y=﹣
∴A點(diǎn)坐標(biāo)為(2,0),B點(diǎn)坐標(biāo)為(﹣8,﹣).
由拋物線經(jīng)過A、B兩點(diǎn),

解得

(2)①設(shè)直線與y軸交于點(diǎn)M,

當(dāng)x=0時(shí),y=.∴OM=
∵點(diǎn)A的坐標(biāo)為(2,0),∴OA=2.∴AM=
∵OM:OA:AM=3:4:5.
由題意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.
∴DE:PE:PD=3:4:5.
∵點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),
∵PD⊥x軸,
∴PD兩點(diǎn)橫坐標(biāo)相同,
∴PD=yP﹣yD=﹣()=﹣x2x+4,

∴x=﹣3時(shí),l最大=15;
②當(dāng)點(diǎn)G落在y軸上時(shí),如圖2,

由△ACP≌△GOA得PC=AO=2,
,解得,
所以P1,2),P2,2),
如圖3,過點(diǎn)P作PN⊥y軸于點(diǎn)N,過點(diǎn)P作PS⊥x軸于點(diǎn)S,

由△PNF≌△PSA,
PN=PS,可得P點(diǎn)橫縱坐標(biāo)相等,
故得當(dāng)點(diǎn)F落在y軸上時(shí),
,解得
可得P3,),P4),(舍去).
綜上所述:滿足題意的點(diǎn)P有三個(gè),分別是P1,2),P2,2),P3,).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線經(jīng)過A(-1,0),C(3,-2)兩點(diǎn),與軸交于點(diǎn)D,與軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過點(diǎn)E(1,1)作EF⊥軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)P旋轉(zhuǎn)180°得△MNQ(點(diǎn)M、N、Q分別與點(diǎn)A、E、F對(duì)應(yīng)),使點(diǎn)M、N在拋物線上,求點(diǎn)N和點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=-x2+2bx+c,當(dāng)x>1時(shí),y的值隨x值的增大而減小,則實(shí)數(shù)b的取值范圍是(  )
A.b≥-1B.b≤-1C.b≥1D.b≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點(diǎn)A、C分別在x軸、y軸上,當(dāng)點(diǎn)A在x軸上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在y軸上運(yùn)動(dòng).在運(yùn)動(dòng)過程中,點(diǎn)B到原點(diǎn)的最大距離是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線可以由拋物線平移得到,則下列平移過程正確的是
A.先向左平移2個(gè)單位,再向上平移3個(gè)單位
B.先向左平移2個(gè)單位,再向下平移3個(gè)位
C.先向右平移2個(gè)單位,再向下平移3個(gè)單位
D.先向右平移2個(gè)單位,再向上平移3個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=9,BC=3,點(diǎn)E是沿A→B方向運(yùn)動(dòng),點(diǎn)F是沿A→D→C方向運(yùn)動(dòng).現(xiàn)E、F兩點(diǎn)同時(shí)出發(fā)勻速運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)速度為每秒1個(gè)單位長度,點(diǎn)F的運(yùn)動(dòng)速度為每秒3個(gè)單位長度,當(dāng)點(diǎn)F運(yùn)動(dòng)到C點(diǎn)時(shí),點(diǎn)E立即停止運(yùn)動(dòng).連接EF,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為x秒,EF的長度為y個(gè)單位長度,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當(dāng)≠1時(shí),;④>0;⑤若,且,則=2.其中正確的有( 。
A.①②③ B.②④ C.②⑤ D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知邊長為4的正方形ABCD,E是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A.          B.
C.        D.

查看答案和解析>>

同步練習(xí)冊答案