【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.

(1)求該拋物線的解析式;

(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;

(3)當0x3時,在拋物線上求一點E,使CBE的面積有最大值(圖乙、丙供畫圖探究).

【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為()時,CBE的面積最大.

【解析】

試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;

(2)由拋物線解析式可求得P點坐標及對稱軸,可設(shè)出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標的方程,可求得M點的坐標;

(3)過E作EFx軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標.

試題解析:(1)直線y=﹣x+3與x軸、y軸分別交于點B、點C,

B(3,0),C(0,3),

把B、C坐標代入拋物線解析式可得 ,解得,

拋物線解析式為y=x2﹣4x+3;

(2)y=x2﹣4x+3=(x﹣2)2﹣1,

拋物線對稱軸為x=2,P(2,﹣1),

設(shè)M(2,t),且C(0,3),

MC=,MP=|t+1|,PC=

∵△CPM為等腰三角形,

有MC=MP、MC=PC和MP=PC三種情況,

當MC=MP時,則有=|t+1|,解得t=,此時M(2,);

當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);

當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);

綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);

(3)如圖,過E作EFx軸,交BC于點F,交x軸于點D,

設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),

0x3,

EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,

SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=×3(﹣x2+3x)=﹣(x﹣2+,

當x=時,CBE的面積最大,此時E點坐標為(,),

即當E點坐標為()時,CBE的面積最大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,ABAC,∠BAC36°,過點AADBC,與∠ABC的平分線交于點DBDAC交于點E,與⊙O交于點F

(1)求∠DAF的度數(shù);

(2)求證:AE2EFED;

(3)求證:AD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,AB5,AC3,BC為半圓O的直徑,將ABC沿射線CB方向平移得到A1B1C1.當A1B1與半圓O相切于點D時,平移的距離的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,港口B位于港口A的南偏西45°方向,燈塔C恰好在AB的中點處.一艘海輪位于港口A的正南方向,港口B的南偏東45°方向的D處,它沿正北方向航行18.5 km到達E處,此時測得燈塔CE的南偏西70°方向上,求E處距離港口A有多遠?

(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=

(1)求a,k的值及點B的坐標;

(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;

(3)在y軸上存在一點P,使得PDCODC相似,請你求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABO的直徑,CD為弦,且ABCDE,點M上一動點(不包括A,B兩點),射線AM與射線EC交于點F

1)如圖,當FEC的延長線上時,求證:∠AMD=∠FMC

2)已知,BE2CD8

O的半徑;

若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為解決部分市民冬季集中取暖問題,需鋪設(shè)一條長4000米的管道,為盡量減少施工對交通造成的影響,施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程20,根據(jù)此情景,題中用“…”表示的缺失的條件應補為( 。

A. 每天比原計劃多鋪設(shè)10米,結(jié)果延期20天完成

B. 每天比原計劃少鋪設(shè)10米,結(jié)果延期20天完成

C. 每天比原計劃多鋪設(shè)10米,結(jié)果提前20天完成

D. 每天比原計劃少鋪設(shè)10米,結(jié)果提前20天完成

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)ym≠0)的圖象交于點AB,與y軸交于點C.過點AADx軸于點D,AD2,∠CAD45°,連接CD,已知ADC的面積等于6

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)若點E是點C關(guān)于x軸的對稱點,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,∠A120°,點EBC邊的中點,點P是對角線BD上一動點,設(shè)PD的長度為x,PEPC的長度和為y,圖2y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為( 。

A.7B.C.D.

查看答案和解析>>

同步練習冊答案