【題目】如圖,將斜邊長為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點(diǎn).現(xiàn)將此三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°后點(diǎn)P的對應(yīng)點(diǎn)的坐標(biāo)是( )
A.( ,1)
B.(1,﹣ )
C.(2 ,﹣2)
D.(2,﹣2 )
【答案】B
【解析】如圖連接OP,因?yàn)?/span>AOB=90°,OAB=30°,
則ABO=60°,
因?yàn)镻是AB的中點(diǎn),
所以O(shè)P=AB=2,且OP=PB,
則三角形OPB是等邊三角形,
所以∠POB=60°,
因?yàn)楝F(xiàn)將此三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,
則點(diǎn)P也繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°到P'
則COP'=POP'-POB=120°-60°=60°,
又因?yàn)镺P=OP',連接PP'交OB于C,則OPP'=OP'P=30°,則PP'OB,則OC=OP'=1,CP'=OP’=,
則P'(1,).故選B.
【考點(diǎn)精析】利用含30度角的直角三角形和直角三角形斜邊上的中線對題目進(jìn)行判斷即可得到答案,需要熟知在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半;直角三角形斜邊上的中線等于斜邊的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a∥b,且a與b之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3,AB.試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MN⊥a且AM+MN+NB的長度和最短,則此時(shí)AM+NB=( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AD,BE分別為△ABC的角平分線,連結(jié)DE.
(1)求證:點(diǎn)E到DA,DC的距離相等;
(2)求∠DEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下述命題中,真命題有( )
(1)對角線互相垂直的四邊形是菱形
(2)三個(gè)角的度數(shù)之比為1:3:4的三角形是直角三角形
(3)對角互補(bǔ)的平行四邊形是矩形
(4)三邊之比為1: :2的三角形是直角三角形.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直角坐標(biāo)系中有一矩形OABC,其中O是坐標(biāo)原點(diǎn),點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(3,4),直線y= x交AB于點(diǎn)D,點(diǎn)P是直線y= x位于第一象限上的一點(diǎn),連接PA,以PA為半徑作⊙P,
(1)連接AC,當(dāng)點(diǎn)P落在AC上時(shí),求PA的長;
(2)當(dāng)⊙P經(jīng)過點(diǎn)O時(shí),求證:△PAD是等腰三角形;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m, ①在點(diǎn)P移動(dòng)的過程中,當(dāng)⊙P與矩形OABC某一邊的交點(diǎn)恰為該邊的中點(diǎn)時(shí),求所有滿足要求的m值;
②如圖2,記⊙P與直線y= x的兩個(gè)交點(diǎn)分別為E,F(xiàn)(點(diǎn)E在點(diǎn)P左下方),當(dāng)DE,DF滿足 < <3時(shí),求m的取值范圍.(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO中,∠OAB=Rt∠,點(diǎn)A在x軸的正半軸,點(diǎn)B在第一象限,C,D分別是BO,BA的中點(diǎn),點(diǎn)E在CD的延長線上.若函數(shù)y1= (x>0)的圖象經(jīng)過B,E,函數(shù)y2= (x>0)的圖象過點(diǎn)C,且△BCE的面積為1,則k2的值為( )
A.
B.
C.3
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,直線y=﹣ x+ 與x軸交于C點(diǎn),與y軸交于點(diǎn)E,點(diǎn)A在x軸的負(fù)半軸,以A點(diǎn)為圓心,AO為半徑的圓與直線的CE相切于點(diǎn)F,交x軸負(fù)半軸于另一點(diǎn)B.
(1)求⊙A的半徑;
(2)連BF、AE,則BF與AE之間有什么位置關(guān)系?寫出結(jié)論并證明.
(3)如圖②,以AC為直徑作⊙O1交y軸于M,N兩點(diǎn),點(diǎn)P是弧MC上任意一點(diǎn),點(diǎn)Q是弧PM的中點(diǎn),連CP,NQ,延長CP,NQ交于D點(diǎn),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下,學(xué)生注意力上課后逐漸增強(qiáng),中間有段時(shí)間處于較理想的穩(wěn)定狀態(tài),隨后開始分散.實(shí)驗(yàn)結(jié)果表明,學(xué)生注意力指數(shù)y隨時(shí)間x(min)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)上課后第5min與第30min相比較,何時(shí)學(xué)生注意力更集中?
(2)某道難題需連續(xù)講19min,為保證效果,學(xué)生注意力指數(shù)不宜低于36,老師能否在所需要求下講完這道題?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com