【題目】如圖,在同一平面直角坐標(biāo)系中,反比例函數(shù)y= 與一次函數(shù)y=kx﹣1(k為常數(shù),且k>0)的圖象可能是( )
A.
B.
C.
D.
【答案】B
【解析】當(dāng)k>0時(shí),直線從左往右上升,雙曲線分別在第一、三象限,故A、C選項(xiàng)不符合題意;
∵一次函數(shù)y=kx﹣1與y軸交于負(fù)半軸,
∴D選項(xiàng)不符合題意,B選項(xiàng)符合題意,
所以答案是:B.
【考點(diǎn)精析】利用一次函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn);反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△PQR在直角坐標(biāo)系中的位置如圖所示:
(1) 求出△PQR的面積;
(2) 畫出△P′Q′R′,使△P′Q′R′與△PQR關(guān)于y軸對(duì)稱,寫出點(diǎn)P′、Q′、R′的坐標(biāo);
(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.
(1)求證:AD=AN;
(2)若AB=4 ,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OE平分,OF平分
若是直角,,求的度數(shù).
若,,,請(qǐng)用x的代數(shù)式來(lái)表示直接寫出結(jié)果就行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠AOD,OC平分∠BOD.
(1)若∠AOB=90°,求∠EOC的度數(shù);
(2)若∠AOB=α,求∠EOC的度數(shù);
(3)如果將題中“平分”的條件改為∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC=4:3,∠AOB=90°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過(guò)P作PE∥AB,通過(guò)平行線性質(zhì)來(lái)求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問(wèn)題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問(wèn)∠APC與α、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,E是AC的中點(diǎn),OE交CD于點(diǎn)F.
(1)若∠BCD=36°,BC=10,求BD的長(zhǎng);
(2)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)求證:2CE2=ABEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、F在線段AB上,點(diǎn)E、G分別在線段BC和AC上,CD∥EF,∠1=∠2.
(1)判斷DG與BC的位置關(guān)系,并說(shuō)明理由;
(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,AB與CD有怎樣的位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com