【題目】如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點(diǎn)D,點(diǎn)E在邊AC上,且滿足ED=EA.

(1)求∠DOA的度數(shù);

(2)求證:直線ED與⊙O相切.

【答案】(1)∠DOA =100°;(2)證明見解析.

【解析】

試題(1)根據(jù)∠CBA=50°,利用圓周角定理即可求得∠DOA的度數(shù);(2)連接OE,利用SSS證明△EAO≌△EDO,根據(jù)全等三角形的性質(zhì)可得∠EDO=∠EAO=90°,即可證明直線ED⊙O相切.

試題解析:(1∵∠DBA=50°,∴∠DOA=2∠DBA=100°;

2)證明:連接OE,

△EAO△EDO中,

AO=DO,EA=EDEO=EO,

∴△EAO≌△EDO

得到∠EDO=∠EAO=90°,

直線ED⊙O相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)長方形的面積為6,它的一邊為x,它的另一邊長為y,周長為p

1)填空:(用含x的代數(shù)式表示)

y=__________;② p=__________;

2)當(dāng)x值從2增大到a+2時(shí),y的值減少了2,求增量a的值;

3)當(dāng)x=m時(shí),p的值為;當(dāng)時(shí),p的值為,求的值,并化成最簡(jiǎn)分式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長線上,且∠CBF= ∠A,tan∠CBF= CF的長為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點(diǎn)O,點(diǎn)E在AO上,且OE=OC.

(1)求證:1=2;

(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+b.

(1)它的圖像與兩坐標(biāo)軸所圍成的圖形的面積等于4,b的值;

(2)它的圖像經(jīng)過一次函數(shù)y=-2x+1、y=x+4圖像的交點(diǎn),b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(材料閱讀)我們?cè)鉀Q過課本中的這樣一道題目:

如圖,四邊形是正方形,邊上一點(diǎn),延長,使,連接.……

提煉1繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到

提煉2;

提煉3:旋轉(zhuǎn)、平移、軸對(duì)稱是圖形全等變換的三種方式.

(問題解決)(1)如圖,四邊形是正方形,邊上一點(diǎn),連接,將沿折疊,點(diǎn)落在處,于點(diǎn),連接.可得: °;三者間的數(shù)量關(guān)系是 .

2)如圖,四邊形的面積為8,,連接.的長度.

3)如圖,在中,,點(diǎn)在邊上,.寫出間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是△ABC內(nèi)部的一點(diǎn),BD=CD,過點(diǎn)DDEAB,DFAC,垂足分別為E、F,且BE=CF.求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)yx與一次函數(shù)yax+7的圖象相交于點(diǎn)P4,n),過點(diǎn)A2,0)作x軸的垂線,交一次函數(shù)的圖象于點(diǎn)B,連接OB

1)求a值;

2)求OBP的面積;

3)在坐標(biāo)軸的正半軸上存在點(diǎn)Q,使POQ是以OP為腰的等腰三角形,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACDABC的外角,∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,∠A1BC的平分線與∠A1CD的平分線交于點(diǎn)A2,∠An1BC的平分線與∠An1CD的平分線交于點(diǎn)An.設(shè)∠Aθ.則:(1)∠A1_____;(2)∠A2_____;(3)∠An_____

查看答案和解析>>

同步練習(xí)冊(cè)答案