【題目】如圖,在不等邊中,,垂足為M,,垂足為N,且,點Q在AC上,,下列結(jié)論:
,
,
平分,
平分,
≌,其中正確的個數(shù)有()
A. 5個B. 4個C. 3個D. 2個
【答案】B
【解析】
利用“HL”證明△APM和△APN全等,根據(jù)全等三角形的性質(zhì)可得:AN=AM,∠PAM=∠PAN,∠APM=∠APN,再根據(jù)等邊對等角可得∠PAN=∠APQ,從而得到∠PAM=∠APQ,然后根據(jù)內(nèi)錯角相等,兩直線平行可得QP∥AM,故①②③④正確;而條件不足,無法證明△BMP≌△CNP,故⑤錯誤.
解:∵PM⊥AB,PN⊥AC,
∴∠AMP=∠ANP=90°,
在Rt△APM和Rt△APN中,,
∴Rt△APM≌Rt△APN(HL),
∴AN=AM,∠PAM=∠PAN,∠APM=∠APN,
∵PQ=QA,
∴∠PAN=∠APQ,
∴∠PAM=∠APQ,
∴QP∥AM,故①②③④正確;
條件不足,無法證明△BMP≌△CNP,故⑤錯誤.
綜上所述,正確的有4個,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.
(1)求證:直線BF是⊙O的切線;
(2)若OB=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點O,點M、點N分別是線段AD、BE的中點.
(1)證明: AD=BE.(2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時休息一小時,然后按原速度繼續(xù)前進到達B地;乙車從B地直接到達A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(3)當兩車相距120千米時,乙車行駛了多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BC于D,E兩點,垂足分別是M,N.
(1)若△ADE的周長是10,求BC的長;
(2)若∠BAC=100°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是某校九年級(1)班20名學生某次數(shù)學測驗的成績統(tǒng)計表:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)若這20名學生成績的平均分數(shù)為82分,求x和y的值;
(2)在(1)的條件下,設這20名學生本次測驗成績的眾數(shù)為a,中位數(shù)為b,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小江去商店購買簽字筆和筆記本(簽字筆的單價相同,筆記本的單價相同).若購買20支簽字筆和15本筆記本,則他身上的錢會不足25元;若購買19支簽字筆和13本筆記本,則他身上的錢會剩下15元.若小江購買17支簽字筆和9本筆記本,則( )
A.他身上的錢會不足95元 B.他身上的錢會剩下95元
C.他身上的錢會不足105元 D.他身上的錢會剩下105元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的中點,連結(jié)AD,BE平分∠ABC交AC于點E,過點E作EF∥BC交AB于點F.
(1)若∠C=36°,求∠BAD的度數(shù);
(2)求證:FB=FE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com