如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O(shè)為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=

(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
(1)3;(2)證明見解析;(3)

試題分析:(1)由AB為圓O的切線,利用切線的性質(zhì)得到OD垂直于AB,在直角三角形BDO中,利用銳角三角函數(shù)定義,根據(jù)tan∠BOD及BD的值,求出OD的值即可;
(2)連接OE,由AE=OD=3,且OD與AE平行,利用一組對(duì)邊平行且相等的四邊形為平行四邊形,根據(jù)平行四邊形的對(duì)邊平行得到OE與AD平行,再由DA與AE垂直得到OE與AC垂直,即可得證;
(3)陰影部分的面積由三角形BOD的面積+三角形ECO的面積-扇形DOF的面積-扇形EOG的面積,求出即可.
試題解析:(1)∵AB與圓O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=,
∴OD=3;
(2)連接OE,

∵AE=OD=3,AE∥OD,
∴四邊形AEOD為平行四邊形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE為圓的半徑,
∴AE為圓O的切線;
(3)∵OD∥AC,
,即,
∴AC=7.5,
∴EC=AC-AE=7.5-3=4.5,
∴S陰影=S△BDO+S△OEC-S扇形FOD-S扇形EOG
=×2×3+×3×4.5-
=3+-
=
考點(diǎn): 1.切線的判定與性質(zhì);2.扇形面積的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,切點(diǎn)分別是A、B,若∠APB=60°,PA=3.則⊙O的半徑是       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P是⊙O的直徑AB延長(zhǎng)線上一點(diǎn),點(diǎn)C在⊙O上,AC=PC,∠ACP=120°.

(1)求證:CP是⊙O的切線;
(2)若AB=4cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于點(diǎn)D且CO=CD,則∠PCA等于(    )
A.30°B.45°C.60°D.67.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若圓錐的側(cè)面展開圖為半圓,則該圓錐的母線與底面半徑r的關(guān)系是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙A、⊙B、⊙C、⊙D、⊙E相互外離,它們的半徑都是1,順次連接五個(gè)圓心得到五邊形ABCDE,則圖中五個(gè)扇形(陰影部分)的面積之和是(  )

A.π         B.π    C.2π        D.4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)O在Rt△ABC的斜邊AB上,⊙O切AC邊于點(diǎn)E,切BC邊于點(diǎn)D,連結(jié)OE,如果由線段CD、CE及劣弧ED圍成的圖形(陰影部分)面積與△AOE的面積相等,那么的值為   ____    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若兩圓的半徑分別是2cm和5cm,圓心距為3cm,則這兩圓的位置關(guān)系是( 。
A.外離B.相交C.外切D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,∠A=90°,AB=AC=2,點(diǎn)O是邊BC的中點(diǎn),半圓O與△ABC相切于點(diǎn)D、E,則陰影部分的面積等于

A.             B.           C.             D.

查看答案和解析>>

同步練習(xí)冊(cè)答案