【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度數(shù).
【答案】解:∵△ABC≌△ADE, ∴∠DAE=∠BAC= (∠EAB﹣∠CAD)= .
∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°
∠DGB=∠DFB﹣∠D=90°﹣25°=65°.
綜上所述:∠DFB=90°,∠DGB=65°.
【解析】由△ABC≌△ADE,可得∠DAE=∠BAC= (∠EAB﹣∠CAD),根據(jù)三角形外角性質(zhì)可得∠DFB=∠FAB+∠B,因?yàn)椤螰AB=∠FAC+∠CAB,即可求得∠DFB的度數(shù);根據(jù)三角形內(nèi)角和定理可得∠DGB=∠DFB﹣∠D,即可得∠DGB的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“互聯(lián)網(wǎng)+”已全面進(jìn)入人們的日常生活,據(jù)有關(guān)部門統(tǒng)計(jì),目前全國4G用戶數(shù)達(dá)到4.62億,其中4.62億用科學(xué)記數(shù)法表示為( )
A.4.62×104
B.4.62×106
C.4.62×108
D.0.462×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半圓O的直徑,點(diǎn)C在半圓O上.
(1)如圖1,若AC=3,∠CAB=30°,求半圓O的半徑;
(2)如圖2,M是的中點(diǎn),E是直徑AB上一點(diǎn),AM分別交CE,BC于點(diǎn)F,D. 過點(diǎn)F作FG∥AB交邊BC于點(diǎn)G,若△ACE與△CEB相似,請?zhí)骄恳渣c(diǎn)D為圓心,GB長為半徑的⊙D與直線AC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一道題,已知線段AB=a,在直線AB上取一點(diǎn)C,使BC=b(a>b),點(diǎn)M,N分別是線段AB,BC的中點(diǎn),求線段MN的長.對這道題,小善同學(xué)的答案是7,小昌同學(xué)的答案是3.老師說他們的結(jié)果都沒錯(cuò),如圖,則依次可得到a的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)學(xué)生方隊(duì),B的位置是第8列第7行,記為(8,7),則學(xué)生A在第二列第三行的位置可以表示為( )
A. (2,1) B. (3,3) C. (2,3) D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時(shí)間后得到如下數(shù)據(jù):
設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.
(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)銷售單價(jià)為多少時(shí),銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一個(gè)例題:
有一個(gè)窗戶形狀如圖1,上部是一個(gè)半圓,下部是一個(gè)矩形,如果制作窗框的材料總長為6m,如何設(shè)計(jì)這個(gè)窗戶,使透光面積最大?
這個(gè)例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時(shí),透光面積最大值約為1.05m2.
我們?nèi)绻淖冞@個(gè)窗戶的形狀,上部改為由兩個(gè)正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:
(1)若AB為1m,求此時(shí)窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計(jì)算說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com