將拋物線y=x2+1先向左平移2個單位,再向下平移3個單位,那么所得拋物線的函數(shù)關(guān)系式是                
y=(x+2)2-2.

試題分析:先求出平移后的拋物線的頂點坐標(biāo),再利用頂點式拋物線解析式寫出即可.
試題解析:拋物線y=x2+1的頂點坐標(biāo)為(0,1),
向左平移2個單位,向下平移3個單位后的拋物線的頂點坐標(biāo)為(-2,-2),
所以,平移后的拋物線的解析式為y=(x+2)2-2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=x2+bx+c的圖象如圖所示,則函數(shù)值y<0時,對應(yīng)x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點,與y軸交于C點,點D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側(cè))點
A、點B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標(biāo).
(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點坐標(biāo).
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設(shè)Q點坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明動手做了一個質(zhì)地均勻、六個面完全相同的正方體,,分別標(biāo)有整數(shù)-2、-1、0、1、2、3,且每個面和它所相對的面的數(shù)字之和均相等,小明向上拋擲該正方體,落地后正方體正面朝上數(shù)字作為為點的橫坐標(biāo),將它所對的面的數(shù)字作為點的縱坐標(biāo),則點落在拋物線軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,若拋物線Y=X2  改為拋物線Y= X2+BX+C 其他條件不變  求矩形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位的速度向B點移動,移動時間為t秒.
①當(dāng)t為何值時,DP⊥AC?
②設(shè),寫出y與t之間的函數(shù)解析式,并探究P點運(yùn)動到第幾秒到第幾秒之間時,y取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB邊上的一個動點(不與點A、B重合),過點D作CD的垂線交射線CA于點E.設(shè)AD=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在矩形ABCD中,AB=2,BC=6,點E為對角線AC的中點,點P在邊BC上,連接PE、PA.當(dāng)點P在BC上運(yùn)動時,設(shè)BP=x,△APE的周長為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A. B.  C.  D.

查看答案和解析>>

同步練習(xí)冊答案