如圖,AB、AC分別是⊙O的直徑和弦,點(diǎn)D為劣弧AC上一點(diǎn),弦ED分別交⊙O于點(diǎn)E,交AB于點(diǎn)H,交AC于點(diǎn)F,過點(diǎn)C的切線交ED的延長線于點(diǎn)P.
(1)若PC=PF,求證:AB⊥ED;
(2)點(diǎn)D在劣弧AC的什么位置時(shí),才能使AD2=DE•DF,為什么?
(1)證明:連接OC,∵PC為⊙O的切線,
∴∠OCP=∠FCP+∠OCF=90°,
∵PC=PF,
∴∠PCF=∠PFC,
∵OA=OC,
∴∠OCA=∠OAC,
∵∠CFP=∠AFH,
∴∠AFH+∠OAC=90°,
∴∠AHF=90°,
即:AB⊥ED.

(2)D在劣弧AC的中點(diǎn)時(shí),才能使AD2=DE•DF.
連接AE.若AD2=DE•DF,
可得:△FAD△AED,
∴∠FAD=∠DEA,
AD
=
CD

即D為劣弧AC的中點(diǎn)時(shí),能使AD2=DE•DF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O的半徑分別是3,點(diǎn)P到圓心O的距離為4,則點(diǎn)P與⊙O的位置關(guān)系是( 。
A.點(diǎn)在圓內(nèi)B.點(diǎn)在圓上C.點(diǎn)在圓外D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,BD為⊙O的直徑,BC為弦,A為BC弧中點(diǎn),AFBC交DB的延長線于點(diǎn)F,AD交BC于點(diǎn)E,AE=2,ED=4.
(1)求證:AF是⊙O的切線;
(2)求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,求弦MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若AE=2,DE=1cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,DB長為半徑作⊙D
(1)試判斷直線AC與⊙D的位置關(guān)系,并說明理由;
(2)若點(diǎn)E在AB上,且DE=DC,當(dāng)AB=3,AC=5時(shí),求線段AE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB、AC分別是⊙O的直徑和弦,D為劣弧
AC
上一點(diǎn),DE⊥AB于點(diǎn)H,交⊙O于點(diǎn)E,交AC于點(diǎn)F,P為ED的延長線上一點(diǎn).
(1)當(dāng)△PCF滿足什么條件時(shí),PC與⊙O相切.為什么?
(2)當(dāng)點(diǎn)D在劣弧
AC
的什么位置時(shí),才能使AD2=DE•DF.為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AC切⊙O于C點(diǎn),CP為⊙O的直徑,AB切⊙O于D與CP的延長線交于B點(diǎn),若AC=PC.
求證:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB切⊙O于點(diǎn)A,BO交⊙O于點(diǎn)C,點(diǎn)D是
CmA
上異于點(diǎn)C、A的一點(diǎn),若∠ABO=32°,則∠ADC的度數(shù)是______度.

查看答案和解析>>

同步練習(xí)冊答案