【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象與直線y=2x+1交于點(diǎn)A(1,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,0)(n≥1),過點(diǎn)P作平行于y軸的直線,交直線y=2x+1于點(diǎn)B,交函數(shù)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)n=3時(shí),求線段AB上的整點(diǎn)個(gè)數(shù);
②若的圖象在點(diǎn)A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個(gè)整點(diǎn),直接寫出n的取值范圍.
【答案】(1)m=3,k=3;(2)①線段AB上有(1,3)、(2,5)、(3,7)共3個(gè)整點(diǎn),②當(dāng)2≤n<3時(shí),有五個(gè)整點(diǎn).
【解析】
(1)將A點(diǎn)代入直線解析式可求m,再代入,可求k.
(2)①根據(jù)題意先求B,C兩點(diǎn),可得線段AB上的整點(diǎn)的橫坐標(biāo)的范圍1≤x≤3,且x為整數(shù),所以x取1,2,3.再代入可求整點(diǎn),即求出整點(diǎn)個(gè)數(shù).
②根據(jù)圖象可以直接判斷2≤n<3.
(1)∵點(diǎn)A(1,m)在y=2x+1上,
∴m=2×1+1=3.
∴A(1,3).
∵點(diǎn)A(1,3)在函數(shù)的圖象上,
∴k=3.
(2)①當(dāng)n=3時(shí),B、C兩點(diǎn)的坐標(biāo)為B(3,7)、C(3,1).
∵整點(diǎn)在線段AB上
∴1≤x≤3且x為整數(shù)
∴x=1,2,3
∴當(dāng)x=1時(shí),y=3,
當(dāng)x=2時(shí),y=5,
當(dāng)x=3時(shí),y=7,
∴線段AB上有(1,3)、(2,5)、(3,7)共3個(gè)整點(diǎn).
②由圖象可得當(dāng)2≤n<3時(shí),有五個(gè)整點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點(diǎn)E、O、F,連接CE和AF.
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,求菱形AECF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對一個(gè)數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連結(jié)AE并延長交BC的延長線于點(diǎn)F.求證:S四邊形ABCD=S△ABF.(S表示面積)
問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說明理由.
實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計(jì)劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66,∠POB=30,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66≈0.91,tan66≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點(diǎn)P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于線段MN的“三等分變換”,給出如下定義:如圖1,點(diǎn)P,Q為線段MN的三等分點(diǎn),即MP=PQ=QN,將線段PM以點(diǎn)P為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°得到PM′,將線段QN以點(diǎn)Q為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°得到QN′,則稱線段MN進(jìn)行了三等分變換,其中M′,N′記為點(diǎn)M,N三等分變換后的對應(yīng)點(diǎn).
例如:如圖2,線段MN,點(diǎn)M的坐標(biāo)為(1,5),點(diǎn)N的坐標(biāo)為(1,2),則點(diǎn)P的坐標(biāo)為(1,4),點(diǎn)Q的坐標(biāo)為(1,3),那么線段MN三等分變換后,可得:M′的坐標(biāo)為(2,4),點(diǎn)N′的坐標(biāo)為(0,3).
(1)若點(diǎn)P的坐標(biāo)為(2,0),點(diǎn)Q的坐標(biāo)為(4,0),直接寫出點(diǎn)M′與點(diǎn)N′的坐標(biāo);
(2)若點(diǎn)Q的坐標(biāo)是(0,﹣),點(diǎn)P在x軸正半軸上,點(diǎn)N′在第二象限.當(dāng)線段PQ的長度為符合條件的最小整數(shù)時(shí),求OP的長;
(3)若點(diǎn)Q的坐標(biāo)為(0,0),點(diǎn)M′的坐標(biāo)為(﹣3,﹣3),直接寫出點(diǎn)P與點(diǎn)N的坐標(biāo);
(4)點(diǎn)P是以原點(diǎn)O為圓心,1為半徑的圓上的一個(gè)定點(diǎn),點(diǎn)P的坐標(biāo)為(,)當(dāng)點(diǎn)N′在圓O內(nèi)部或圓上時(shí),求線段PQ的取值范圍及PQ取最大值時(shí)點(diǎn)M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)北京市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,北京市近五年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯(cuò)誤的是( )
A.2013年至2017年北京市國民生產(chǎn)總值逐年增加
B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5 320億元
C.2017年比2016年的國民生產(chǎn)總值增加了10%
D.若從2018年開始,每一年的國民生產(chǎn)總值比前一年均增長10%,到2019年的國民生產(chǎn)總值將達(dá)到33 880億元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小帶和小路兩個(gè)人開車從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當(dāng)小帶和小路的車相距50 km時(shí),t=或t=.其中正確的結(jié)論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,是邊的中線,于,連結(jié),點(diǎn)在射線上(與,不重合)
(1)如果
①如圖1,
②如圖2,點(diǎn)在線段上,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,連結(jié),補(bǔ)全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖3,若點(diǎn)在線段 的延長線上,且,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連結(jié),請直接寫出、、三者的數(shù)量關(guān)系(不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛轎車從甲城駛往乙城,同時(shí)一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達(dá)乙城停留一段時(shí)間后按原路返回:卡車到達(dá)甲城比轎車返回甲城早0.5小時(shí),兩車到達(dá)甲城后均停止行駛,兩車距離甲城的路程y(km)與出發(fā)時(shí)間t(h)之間的關(guān)系如圖1所示,請結(jié)合圖象提供的信息解答下列問題:
(1)求轎車和卡車的速度;
(2)求CD段的函數(shù)解析式;
(3)若設(shè)在行駛過程中,轎車與卡車之間的距離為S(km)行駛的時(shí)間為t(h),請你在圖2中畫出S(km)關(guān)于t(h)函數(shù)的圖象,并標(biāo)出每段函數(shù)圖象端點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)緯文教用品商店欲購進(jìn)A、B兩種筆記本,用160元購進(jìn)的A種筆記本與用240元購進(jìn)的B種筆記本的數(shù)量相同,每本B種筆記本的進(jìn)價(jià)比每本A種筆記本的進(jìn)價(jià)貴10元.
(1)求A、B兩種筆記本每本的進(jìn)價(jià)分別為多少元?
(2)若該商店A種筆記本每本售價(jià)24元,B種筆記本每本售價(jià)35元,準(zhǔn)備購進(jìn)A、B兩種筆記本共100本,且這兩種筆記本全部售出后總獲利高于468元,則最多購進(jìn)A種筆記本多少本?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com