如圖9,平分于點(diǎn),點(diǎn)Q是射線上的一個動點(diǎn),若,則PQ的最小值為(   )

A.1        B.2           C.3           D.4

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

29、閱讀探究題:數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識:有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時,張老師出示了問題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.經(jīng)過思考,小明展示了一種正確的解題思路:在線段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•岳陽)某數(shù)學(xué)興趣小組開展了一次課外活動,過程如下:如圖1,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長線于點(diǎn)Q.
(1)求證:DP=DQ;
(2)如圖2,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請猜測他的結(jié)論并予以證明;
(3)如圖3,固定三角板直角頂點(diǎn)在D點(diǎn)不動,轉(zhuǎn)動三角板,使三角板的一邊交AB的延長線于點(diǎn)P,另一邊交BC的延長線于點(diǎn)Q,仍作∠PDQ的平分線DE交BC延長線于點(diǎn)E,連接PE,若AB:AP=3:4,請幫小明算出△DEP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,BO、CO分別是△ABC中∠ABC和∠ACB的平分線,則∠BOC與∠A的關(guān)系是
90°+
1
2
∠A
90°+
1
2
∠A
(直接寫出結(jié)論);
(2)如圖2,BO、CO分別是△ABC兩個外角∠CBD和∠BCE的平分線,則∠BOC與∠A的關(guān)系是
90°-
1
2
∠A
90°-
1
2
∠A
,請證明你的結(jié)論.
(3)如圖3,BO、CO分別是△ABC一個內(nèi)角和一個外角的平分線,則∠BOC與∠A的關(guān)系是
1
2
∠A
1
2
∠A
,請證明你的結(jié)論.
(4)利用以上結(jié)論完成以下問題:如圖4,已知:∠DOF=90°,點(diǎn)A、B分別是射線OF、OD上的動點(diǎn),△ABO的外角∠OBE的平分線與內(nèi)角∠OAB的平分線相交于點(diǎn)P,猜想∠P的大小是否變化?請證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆福建省八年級第一學(xué)期期中數(shù)學(xué)試卷 題型:選擇題

如圖9,平分于點(diǎn),點(diǎn)Q是射線上的一個動點(diǎn),若,則PQ的最小值為(   )

A.1        B.2           C.3            D.4

 

查看答案和解析>>

同步練習(xí)冊答案