【題目】某校數(shù)學(xué)興趣小組在一次數(shù)學(xué)課外活動中,隨機抽查該校10名同學(xué)參加今年初中學(xué)業(yè)水平考試的體育成績,得到結(jié)果如下表所示:
成績/分 | 36 | 37 | 38 | 39 | 40 |
人數(shù)/人 | 1 | 2 | 1 | 4 | 2 |
下列說法正確的是( )
A.這10名同學(xué)體育成績的中位數(shù)為38分
B.這10名同學(xué)體育成績的平均數(shù)為38分
C.這10名同學(xué)體育成績的眾數(shù)為39分
D.這10名同學(xué)體育成績的方差為2
【答案】C
【解析】解:10名學(xué)生的體育成績中39分出現(xiàn)的次數(shù)最多,眾數(shù)為39;
第5和第6名同學(xué)的成績的平均值為中位數(shù),中位數(shù)為: =39;
平均數(shù)= =38.4
方差= [(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
∴選項A,B、D錯誤;
故選C.
【考點精析】掌握中位數(shù)、眾數(shù)是解答本題的根本,需要知道中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x(1≤x≤13且x為奇數(shù)或偶數(shù)).把牌洗勻后第一次抽取一張,記好花色和數(shù)字后將牌放回,重新洗勻第二次再抽取一張.
(1)求兩次抽得相同花色的概率;
(2)當(dāng)甲選擇x為奇數(shù),乙選擇x為偶數(shù)時,他們兩次抽得的數(shù)字和是奇數(shù)的可能性大小一樣嗎?請說明理由.(提示:三張撲克牌可以分別簡記為紅2、紅3、黑x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個位上的數(shù)字之和為y,如果x=y,那么稱這個四位數(shù)為“和平數(shù)”. 例如:1423,x=1+4,y=2+3,因為x=y,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是 , 最大的“和平數(shù)”是;
(2)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”;
(3)將一個“和平數(shù)”的個位上與十位上的數(shù)字交換位置,同時,將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個“和平數(shù)”為一組“相關(guān)和平數(shù)”. 例如:1423與4132為一組“相關(guān)和平數(shù)”
求證:任意的一組“相關(guān)和平數(shù)”之和是1111的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機抽取一張卡片,求抽到數(shù)字“﹣1”的概率;
(2)隨機抽取一張卡片,然后不放回,再隨機抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上,從中隨機抽取兩張.
(1)用畫樹狀圖或列表的方法,列出抽得撲克牌上所標(biāo)數(shù)字的所有可能組合;
(2)求抽得的撲克牌上的兩個數(shù)字之積的算術(shù)平方根為有理數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2 , 其中正確結(jié)論是(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),a≠0)的圖象過點O(0,0)和點A(4,0),函數(shù)圖象最低點M的縱坐標(biāo)為﹣ ,直線l的解析式為y=x.
(1)求二次函數(shù)的解析式;
(2)直線l沿x軸向右平移,得直線l′,l′與線段OA相交于點B,與x軸下方的拋物線相交于點C,過點C作CE⊥x軸于點E,把△BCE沿直線l′折疊,當(dāng)點E恰好落在拋物線上點E′時(圖2),求直線l′的解析式;
(3)在(2)的條件下,l′與y軸交于點N,把△BON繞點O逆時針旋轉(zhuǎn)135°得到△B′ON′,P為l′上的動點,當(dāng)△PB′N′為等腰三角形時,求符合條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com