【題目】如圖,過A(1,0)、B(3,0)作x軸的垂線,分別交直線y=4﹣x于C、D兩點(diǎn).拋物線y=ax2+bx+c經(jīng)過O、C、D三點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)M為直線OD上的一個(gè)動點(diǎn),過M作x軸的垂線交拋物線于點(diǎn)N,問是否存在這樣的點(diǎn)M,使得以A、C、M、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)M的橫坐標(biāo);若不存在,請說明理由;
(3)若△AOC沿CD方向平移(點(diǎn)C在線段CD上,且不與點(diǎn)D重合),在平移的過程中△AOC與△OBD重疊部分的面積記為S,試求S的最大值.
【答案】
(1)
解:由題意,可得C(1,3),D(3,1).
∵拋物線過原點(diǎn),∴設(shè)拋物線的解析式為:y=ax2+bx.
∴ ,
解得 ,
∴拋物線的表達(dá)式為:y=﹣ x2+ x
(2)
解:存在.
設(shè)直線OD解析式為y=kx,將D(3,1)代入,
求得k= ,
∴直線OD解析式為y= x.
設(shè)點(diǎn)M的橫坐標(biāo)為x,則M(x, x),N(x,﹣ x2+ x),
∴MN=|yM﹣yN|=| x﹣(﹣ x2+ x)|=| x2﹣4x|.
由題意,可知MN∥AC,因?yàn)橐訟、C、M、N為頂點(diǎn)的四邊形為平行四邊形,則有MN=AC=3.
∴| x2﹣4x|=3.
若 x2﹣4x=3,整理得:4x2﹣12x﹣9=0,
解得:x= 或x= ;
若 x2﹣4x=﹣3,整理得:4x2﹣12x+9=0,
解得:x= .
∴存在滿足條件的點(diǎn)M,點(diǎn)M的橫坐標(biāo)為: 或 或
(3)
解:∵C(1,3),D(3,1)
∴易得直線OC的解析式為y=3x,直線OD的解析式為y= x.
如解答圖所示,
設(shè)平移中的三角形為△A′O′C′,點(diǎn)C′在線段CD上.
設(shè)O′C′與x軸交于點(diǎn)E,與直線OD交于點(diǎn)P;
設(shè)A′C′與x軸交于點(diǎn)F,與直線OD交于點(diǎn)Q.
設(shè)水平方向的平移距離為t(0≤t<3),
則圖中AF=t,F(xiàn)(1+t,0),Q(1+t, + t),C′(1+t,3﹣t).
設(shè)直線O′C′的解析式為y=3x+b,
將C′(1+t,3﹣t)代入得:b=﹣4t,
∴直線O′C′的解析式為y=3x﹣4t.
∴E( t,0).
聯(lián)立y=3x﹣4t與y= x,解得x= t,
∴P( t, t).
過點(diǎn)P作PG⊥x軸于點(diǎn)G,則PG= t.
∴S=S△OFQ﹣S△OEP= OFFQ﹣ OEPG
= (1+t)( + t)﹣ t t
=﹣ (t﹣1)2+
當(dāng)t=1時(shí),S有最大值為 .
∴S的最大值為 .
【解析】(1)利用待定系數(shù)法求出拋物線的解析式;(2)由題意,可知MN∥AC,因?yàn)橐訟、C、M、N為頂點(diǎn)的四邊形為平行四邊形,則有MN=AC=3.設(shè)點(diǎn)M的橫坐標(biāo)為x,則求出MN=| x2﹣4x|;解方程| x2﹣4x|=3,求出x的值,即點(diǎn)M橫坐標(biāo)的值;(3)設(shè)水平方向的平移距離為t(0≤t<3),利用平移性質(zhì)求出S的表達(dá)式:S=﹣ (t﹣1)2+ ;當(dāng)t=1時(shí),s有最大值為 .
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進(jìn)了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進(jìn)價(jià)比一臺B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購進(jìn)A型空氣凈化器和用6000元購進(jìn)B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷售過程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進(jìn)行降價(jià)銷售,經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣出4臺,在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前正值櫻桃銷售季節(jié),小李用20000元在櫻桃基地購進(jìn)櫻桃若干進(jìn)行銷售,由于銷售狀況良好,他又立即拿出60000元資金購進(jìn)該種櫻桃,但這次的進(jìn)貨價(jià)比第一次的進(jìn)貨價(jià)提高了20%,購進(jìn)櫻桃數(shù)量是第一次的2倍還多200千克.
(1)該種櫻桃的第一次進(jìn)價(jià)是每千克多少元?
(2)如果小李按每千克90元的價(jià)格出售,當(dāng)大部分櫻桃售出后,余下500千克按售價(jià)的7折出售完,小李銷售這種櫻桃共盈利多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論: ①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,以BC為直徑的⊙O與AB交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)計(jì)算 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動點(diǎn)P從A出發(fā),以每秒4個(gè)單位長度的速度向終點(diǎn)C移動,設(shè)移動時(shí)間為t秒.
(1)用含t的代數(shù)式表示點(diǎn)P與A的距離:PA= ;點(diǎn)P對應(yīng)的數(shù)是 ;
(2)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度向終點(diǎn)C移動,若P、Q同時(shí)出發(fā),求:當(dāng)點(diǎn)P運(yùn)動多少秒時(shí),點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)一個(gè)商標(biāo)圖形(如圖8所示),在△ABC中,AB=AC=2cm,∠B=30°,以A為圓心,AB為半徑作 ,以BC為直徑作半圓 ,則商標(biāo)圖案(陰影)面積等于cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,8),B(﹣4,0),線段AB的垂直平分線CD分別交AB、OA于點(diǎn)C、D,其中點(diǎn)D的坐標(biāo)為(0,3).
(1)求直線AB的解析式;
(2)求線段CD的長;
(3)點(diǎn)E為y軸上一個(gè)動點(diǎn),當(dāng)△CDE為等腰三角形時(shí),求E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點(diǎn)E,連接BE,將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,則CE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com