【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.
①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?
②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?
【答案】(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.
【解析】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;
(2)①設購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,由條件可得到關于m的不等式組,則可求得m的取值范圍,且m為整數(shù),則可求得m的值,即可求得進貨方案;
②用m可表示出W,可得到關于m的一次函數(shù),利用一次函數(shù)的性質(zhì)可求得答案.
(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,
根據(jù)題意可得,解得,
答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;
(2)①若購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,
根據(jù)題意可得 ,解得75<m≤78,
∵m為整數(shù),
∴m的值為76、77、78,
∴進貨方案有3種,分別為:
方案一,購進甲種羽毛球76筒,乙種羽毛球為124筒,
方案二,購進甲種羽毛球77筒,乙種羽毛球為123筒,
方案一,購進甲種羽毛球78筒,乙種羽毛球為122筒;
②根據(jù)題意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W隨m的增大而增大,且75<m≤78,
∴當m=78時,W最大,W最大值為1390,
答:當m=78時,所獲利潤最大,最大利潤為1390元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A坐標為(6,0),點B在y軸的正半軸上,且=240.
(1)求點B坐標;
(2)若點P從B出發(fā)沿y軸負半軸方向運動,速度每秒2個單位,運動時間t秒,△AOP的面積為S,求S與t的關系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在線段AB的垂直平分線上是否存在點Q,使得△AOQ的面積與△BPQ的面積相等?若存在,求出Q點坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,矩形OABC的頂點B坐標為(12,5),點D在 CB邊上從點C運動到點B,以AD為邊作正方形ADEF,連BE、BF,在點D運動過程中,請?zhí)骄恳韵聠栴}:
(1)△ABF的面積是否改變,如果不變,求出該定值;如果改變,請說明理由;
(2)若△BEF為等腰三角形,求此時正方形ADEF的邊長;
(3)設E(x,y),直接寫出y關于x的函數(shù)關系式及自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】類似乘方,我們把求若干個相同的不為零的有理數(shù)的除法運算叫做“除方”如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,并將2÷2÷2記作2③,讀作“2的圈3次方”;(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”.
(1)直接寫出結果:2③= ,(﹣3)④= ,()⑤= ,
(2)計算:24÷23+(﹣8)×2③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺進貨價為2500元.市場調(diào)研表明:當銷售價為2900元時,平均每天能售出8臺;而當銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,設每臺冰箱的定價為x元,則x滿足的關系式為( )
A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000
C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在有些情況下,不需要計算出結果也能把絕對值符號去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7
(1)根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式:
①|7﹣21|= ;②|﹣﹣0.8|= ;③|﹣|= :
(2)數(shù)a在數(shù)軸上的位置如圖所示,則|a﹣2.5|= .
A.a﹣2.5
B.2.5﹣a
C.a+2.5
D.﹣a﹣2.5
(3)利用上述介紹的方法計算或化簡:
①|﹣|+|﹣|﹣|﹣|+;
②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青島交運集團出租車司機張師傅某天下午的營運全是在東西走向的吉林路上進行的,如果規(guī)定向東為正,向西為負,他這天下午行車里程單位:千米如下:,,,,,,,,,,
(1)張師傅這天最后到達目的地時,在下午出車時的出發(fā)地哪個方向?距離出發(fā)地多遠?
(2)張師傅這天下午共行車多少千米?
(3)若每千米耗油,則這天下午張師傅用了多少升油?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com