【題目】如圖,拋物線與x軸交于A,B兩點,與y軸交于點C,且OA=2,OC=3.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上是否存在一點P,使得△BDP的周長最短?若存在,求點P的坐標(biāo);若不存在,請說明理由.
(3)求出△ABC外接圓心M的坐標(biāo).
【答案】(1)y=x2+x+3;(2)存在,P坐標(biāo)為(,);(3)圓心坐標(biāo):M(,).
【解析】
(1)根據(jù)OA、OC的長即可求出A、C兩點的坐標(biāo),代入解析式即可;
(2)連接BD、AD,AD交對稱軸于點P,連接BP,要使△BDP的周長最短,故只需使BP+DP最小即可,此時BP+DP=AP+DP=AD,根據(jù)兩點之間線段最短,故P為所求的點,利用待定系數(shù)法和對稱軸公式分別求出直線AD的解析式及拋物線的對稱軸,即可求出P點坐標(biāo);
(3)根據(jù)三角形的外接圓圓心為三邊中垂線的交點,故M在拋物線對稱軸上,可設(shè)M的坐標(biāo)為(,a),根據(jù)平面直角坐標(biāo)系中任意兩點之間的距離公式和MA=MB,列方程即可.
(1)∵OA=2,OC=3,
∴A(2,0),C(0,3),代入拋物線解析式
得:c=3,2 2b+3=0,
解得:b=,c=3,
則拋物線解析式為y=x2+x+3
(2)存在,連接BD、AD,交對稱軸于點P,連接BP,要使△BDP的周長最短,故只需使BP+DP最小即可,此時BP+DP=AP+DP=AD,根據(jù)兩點之間線段最短,故P為所求的點,
設(shè)直線AD解析式為y=mx+n(m≠0), 把A(2,0),D(2,2)代入得:
解得:m=,n=1,
∴直線AD解析式為y=x+1,
∵對稱軸為直線,
當(dāng)x=時,y=,則P坐標(biāo)為(,).
(3)由題意可知:M在直線x=上, 且MA=MC,
設(shè)M(,a)
∴,
∴
解得:a=
圓心坐標(biāo)M:(,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB=90°.
(Ⅰ)如圖1,連接BD,若⊙O的半徑為6,弧AD=弧AB,求AB的長;
(Ⅱ)如圖2,連接AC,若AD=5,AB=3,對角線AC平分∠DAB,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c中,4a﹣b=0,a﹣b+c>0,拋物線與x軸有兩個不同的交點,且這兩個交點之間的距離小于2.則下列結(jié)論:①abc<0,②c>0,③a+b+c>0,④4a>c,其中,正確結(jié)論的個數(shù)是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過A、C、D三點的圓O交AB于點E,連接DE、CE,∠BCE=∠CDE.
(1)求證:直線BC為圓O的切線;
(2)猜想AD與CE的數(shù)量關(guān)系,并說明理由;
(3)若BC=2,∠BCE=30°,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進(jìn)行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應(yīng)環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應(yīng)環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變。ㄌ“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標(biāo);
(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光下,一名同學(xué)測得一根長為1米的垂直地面的竹竿的影長為0.6米,同時另一名同學(xué)測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺階上,測得落在教學(xué)樓第一級臺階上的影子長為0.2米,一級臺階高為0.3米,如圖所示,若此時落在地面上的影長為4.42米,則樹高為_____米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com