【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A. 30.6 B. 32.1 C. 37.9 D. 39.4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+12與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo).
(2)若P是x軸上的一個(gè)動(dòng)點(diǎn),直接寫出當(dāng)△POC是等腰三角形時(shí)P的坐標(biāo).
(3)在直線AB上是否存在點(diǎn)M,使得△MOC的面積是△AOC面積的2倍?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn):若每箱以50元的價(jià)格出售,平均每天銷售80箱,價(jià)格每提高1元,平均每天少銷售2箱.
⑴.求平均每天銷售量(箱)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;
⑵.求該批發(fā)商平均每天的銷售利潤(rùn)(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;
⑶.當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,于點(diǎn),是的中點(diǎn),連結(jié)交于點(diǎn).
(1)與全等嗎?請(qǐng)說明理由.
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】英國(guó)曼徹斯特大學(xué)的兩位科學(xué)家因?yàn)槌晒Φ貜氖蟹蛛x出石墨烯,榮獲了諾貝爾物理學(xué)獎(jiǎng).石墨烯目前是世上最薄卻也是最堅(jiān)硬的納米材料,同時(shí)還是導(dǎo)電性最好的材料,其理論厚度僅0.000 000 000 34米,將這個(gè)數(shù)用科學(xué)記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:①aa2=_____;
②=_____;
③a0=_____(a≠0);
④=_____;
⑤﹣6a÷3a=_____;
⑥=_____;
⑦=_____;
⑧=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,⊙O為Rt△ABC的內(nèi)切圓,切點(diǎn)為D、E、F,則⊙O的半徑為( 。
A. cm B. 1cm C. cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com