【題目】如圖,拋物線與直線交于A,B兩點(diǎn),交x軸于D,C兩點(diǎn),連接,,已知,

1)求拋物線的解析式;

2Py軸右側(cè)拋物線上一動(dòng)點(diǎn),連接,過(guò)點(diǎn)Py軸于點(diǎn)Q,問(wèn):是否存在點(diǎn)P使得以A,P,Q為項(xiàng)點(diǎn)的三角形與相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)設(shè)E為線段上一點(diǎn)(不含端點(diǎn)),連接,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止,當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少?

【答案】1;(2)存在,且點(diǎn)P的坐標(biāo)為(1136)或(,)或(,);(3)當(dāng)點(diǎn)E的坐標(biāo)為(21)時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少

【解析】

1)把A、C兩點(diǎn)代入拋物線解析式,即可得到關(guān)于m、n的方程組,解方程組即可求出m、n的值,進(jìn)而可得結(jié)果;

2)先求出直線AB與拋物線的交點(diǎn)B的坐標(biāo),再利用勾股定理逆定理判斷出△ABC是直角三角形,從而∠ACB90°;過(guò)點(diǎn)PPGy軸于G,設(shè)點(diǎn)P的橫坐標(biāo)為x,再分點(diǎn)G在點(diǎn)A的下方和點(diǎn)G在點(diǎn)A的上方,分別利用相似三角形的性質(zhì)用含x的代數(shù)式表示出點(diǎn)P的坐標(biāo),然后代入拋物線的解析式即可求得x的值,問(wèn)題即得解決;

3)如圖3,過(guò)A作射線AFx軸,過(guò)D作射線DFy軸,DFAC交于點(diǎn)EDFAF交于點(diǎn)F,易求得點(diǎn)M在整個(gè)運(yùn)動(dòng)中的用時(shí)為:tDE+EF=DF,此時(shí)點(diǎn)M在整個(gè)運(yùn)動(dòng)中的用時(shí)最少,然后求出點(diǎn)D坐標(biāo)后,把D的橫坐標(biāo)代入直線AC解析式即可求出結(jié)果.

解:(1)把,代入拋物線的解析式,得;,解得:,

∴拋物線的解析式為:;

2)存在點(diǎn)P,使得以A,PQ為頂點(diǎn)的三角形與△ACB相似.

聯(lián)立,解得:,∴點(diǎn)B的坐標(biāo)為(4,1).

C30),B41),A0,3),

AB220,BC22AC218,

BC2+AC2AB2,∴△ABC是直角三角形,

∴∠ACB90°,且tanBAC

過(guò)點(diǎn)PPGy軸于G,則∠PGA90°.

設(shè)點(diǎn)P的橫坐標(biāo)為x,由Py軸右側(cè)可得x0,則PGx

PQPA,∠ACB90°,∴∠APQ=∠ACB90°.

若點(diǎn)G在點(diǎn)A的下方,

①如圖2①,當(dāng)∠PAQ=∠CAB時(shí),則△PAQ∽△CAB

∵∠PGA=∠ACB90°,∠PAQ=∠CAB,

∴△PGA∽△BCA,∴,

AG3PG3x,則Px33x),

Px33x)代入,得,

解得:x10(舍去),x2=﹣1(舍去);

②如圖2②,當(dāng)∠PAQ=∠CBA時(shí),則△PAQ∽△CBA

同理可得:AGPGx,則Px,3x),

Px3x)代入,得

解得:x10(舍去),x2,

P,);

若點(diǎn)G在點(diǎn)A的上方,

①當(dāng)∠PAQ=∠CAB時(shí),則△PAQ∽△CAB,

∵△PGA∽△BCA,∴,

AG3PG3x,則Px,3+3x),

Px,3+3x)代入,得,

解得:x10(舍去),x211;

∴點(diǎn)P的坐標(biāo)為(1136).

②當(dāng)∠PAQ=∠CBA時(shí),則△PAQ∽△CBA

同理可得:AGPGx,則Px,3+x),

Px3+x)代入,得,

解得:x10(舍去),x2,

P);

綜上所述:滿足條件的點(diǎn)P的坐標(biāo)為(1136)或()或(,);

3)如圖3,過(guò)A作射線AFx軸,過(guò)D作射線DFy軸,DFAC交于點(diǎn)E,DFAF交于點(diǎn)F

A03),C3,0),∴lACy=﹣x+3,

OAOC,∠AOC90°,∴∠ACO45°,

AFOC,∴∠FAE45°,

EFAEsin45°=,

∴點(diǎn)M在整個(gè)運(yùn)動(dòng)中的用時(shí)為:tDE+EF=DF,即當(dāng)AFDF時(shí),DE+EF取得最小值DF,此時(shí)點(diǎn)M在整個(gè)運(yùn)動(dòng)中的用時(shí)最少,

∵拋物線的解析式為,令y=0,則,解得:

D點(diǎn)坐標(biāo)為(2,0),則E點(diǎn)橫坐標(biāo)為2,將x2代入lACy=﹣x+3,得y1,所以E2,1).

即當(dāng)點(diǎn)E的坐標(biāo)為(21)時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)服裝柜在銷售中發(fā)現(xiàn):某牌童裝平均每天可售出20件,每件盈利40元.為了迎接六一兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,減少庫(kù)存,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝每降價(jià)4元,那么平均每天就可多售出8件,

1)若商場(chǎng)要想平均每天在銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?

2)若商場(chǎng)要想平均每天在銷售這種童裝上盈利最多,那么每件童裝應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)的圖象相交于點(diǎn)A,并與軸交于點(diǎn)C,SAOC=15.點(diǎn)D是線段AC上一點(diǎn),CDAC=23

1)求的值;

2)求點(diǎn)D的坐標(biāo);

3)根據(jù)圖象,直接寫(xiě)出當(dāng)時(shí)不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交ADE,交BA的延長(zhǎng)線于點(diǎn)F.

1)求證:.

2)如果,求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:y=kx+b 經(jīng)過(guò)點(diǎn)A(﹣,0)和點(diǎn)B(2,5)

(1)求直線l1y軸的交點(diǎn)坐標(biāo);

(2)若點(diǎn)C(a,a+2)與點(diǎn)D在直線l1上,過(guò)點(diǎn)D的直線l2x軸正半軸交于點(diǎn) E,當(dāng)AC=CD=CE 時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(diǎn),與y軸交于C.直線yx+3經(jīng)過(guò)點(diǎn)A、C

1)求拋物線的解析式;

2P是拋物線上一動(dòng)點(diǎn),過(guò)PPMy軸交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t

①若以點(diǎn)C、OM、P為頂點(diǎn)的四邊形是平行四邊形,求t的值.

②當(dāng)射線MP,AC,MO中一條射線平分另外兩條射線的夾角時(shí),直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三位數(shù)t(其中ab、c不全相等且都不為0),重新排列各數(shù)位上的數(shù)字必可得到一個(gè)最大數(shù)和一個(gè)最小數(shù),此最大數(shù)和最小數(shù)的差叫做原數(shù)的差數(shù),記為Tt).例如,539的差數(shù)T539)=953359594

1)根據(jù)以上方法求出T268)=   ,T513)=   

2)已知三位數(shù)(其中ab1)的差數(shù)T)=495,且各數(shù)位上的數(shù)字之和為3的倍數(shù),求所有符合條件的三位數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,l1、l2、l3兩兩相交于AB、C三點(diǎn),它們與y軸正半軸分別交于點(diǎn)D、E、F,若AB、C三點(diǎn)的坐標(biāo)分別為(1yA)、(2yB)、(3yC),且ODDE1,則下列結(jié)論正確的個(gè)數(shù)是( 。EC3EA,②SABC1,③OF5,④2yAyAyC2

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案