【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標(biāo)為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關(guān)于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.

(1)求拋物線的解析式;
(2)填空:
①用含m的式子表示點C,D的坐標(biāo):
C(  ,   ),D(  );
②當(dāng)m=   時,△ACD的周長最;
(3)若△ACD為等腰三角形,求出所有符合條件的點P的坐標(biāo).

【答案】
(1)

解:(1)依題意,得,解得

∴y=x2x


(2)m;;2m;0;1
(3)

依題意,得B(m,0)

在RT△OBC中,OC2=OB2+BC2=m2+=m2,

∴OC=m 又∵O,D關(guān)于直線PC對稱,

∴CD=OC=m

在RT△AOE中,OA===

∴AC=OA﹣OC=m

在RT△ADE中,AD2=AE2+DE2=12+(2﹣2m)2=4m2﹣8m+5

分三種情況討論:

①若AC=CD,即m=m,解得m=1,∴P(1,

②若AC=AD,則有AC2=AD2,即5﹣5m+m2=4m2﹣8m+5

解得m1=0,m2=.∵0<m<2,∴m=,∴P(,

③若DA=DC,則有DA2=DC2,即4m2﹣8m+5=m2

解得m1=,m2=2,∵,0<m<2,∴m=,∴P(,

綜上所述,當(dāng)△ACD為等腰三角形是,點P的坐標(biāo)分別為P1(1,),P2,),P3,).


【解析】(1)根據(jù)拋物線對稱軸公式和代入法可得關(guān)于a,b的方程組,解方程組可得拋物線的解析式;
(2)①設(shè)OA所在的直線解析式為y=kx,將點A(2,1)代入求得OA所在的解析式為y=x,因為PC⊥x軸,所以C得橫坐標(biāo)與P的橫坐標(biāo)相同,為m,令x=m,則y=m,所以得出點C(m,m),又點O、D關(guān)于直線PB的對稱,所以由中點坐標(biāo)公式可得點D的橫坐標(biāo)為2m,則點D的坐標(biāo)為(2m,0);
②因為O與D關(guān)于直線PB的對稱,所以PB垂直平分OD,則CO=CD,因為,△ACD的周長=AC+CD+AD=AC+CO+AD=AO,OA===,所以當(dāng)AD最小時,△ACD的周長最;根據(jù)垂線段最短,可知此時點D與E重合,其橫坐標(biāo)為2,故m=1.
(3)由中垂線得出CD=OC,再將OC、AC、AD用m表示,然后分情況討論分別得到關(guān)于m的方程,解得m,再根據(jù)已知條件選取復(fù)合體藝的點P坐標(biāo)即可.
【考點精析】通過靈活運用二次函數(shù)的性質(zhì),掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點C在y軸的正半軸上,且OA=OC,則( 。

A.ac+1=b
B.ab+1=c
C.bc+1=a
D.以上都不是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,E是邊AD的中點.若AC=10,DC=,則BO= ,∠EBD的大小約為  分.(參考數(shù)據(jù):tan26°34′≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,三角形的三個頂點均落在格點上.

(1)以三角形的其中兩邊為邊畫一個平行四邊形,并在頂點處標(biāo)上字母A,B,C,D
(2)證明四邊形ABCD是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是AB延長線上的一點,CD與半圓O相切于點D,連接AD,BD.

(1)求證:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半徑.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 只有一個實數(shù)根,則實數(shù)a的取值范圍是(
A.a>0
B.a<0
C.a≠0
D.a為一切實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玉米種子的價格為a/千克,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折.下表是購買量x(千克)、付款金額y(元)部分對應(yīng)的值,請你結(jié)合表格:

購買量x(千克)

1.5

2

2.5

3

付款金額y(元)

7.5

10

12

b

(1)寫出a、b的值,a=    b=   

(2)求出當(dāng)x2時,y關(guān)于x的函數(shù)關(guān)系式;

(3)甲農(nóng)戶將18.8元錢全部用于購買該玉米種子,計算他的購買量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1的⊙O與正五邊形ABCDE相切于點A、C , 則弧AC的長為

A. π
B. π
C. π
D. π

查看答案和解析>>

同步練習(xí)冊答案