兩個反比例函數(shù)數(shù)學公式,數(shù)學公式在第一象限內(nèi)的圖象如圖所示,點P1、P2在反比例函數(shù)圖象上,過點P1作x軸的平行線與過點P2作y軸的平行線相交于點N,若點N(m,n)恰好在數(shù)學公式的圖象上,則NP1與NP2的乘積是________.

3
分析:求出N(m,),根據(jù)平行線和N的坐標求出P2的橫坐標是m,P1的縱坐標是,代入y=,求出P1、P2的坐標,求出NP2、NP1的值,即可求出NP1與NP2的積.
解答:N(m,n)在y=上,
∴N(m,),
∵NP2∥y軸,NP1∥x軸,
∴P2的橫坐標是m,P1的縱坐標是
∵P1、P2在y=上,
代入得:①y=
=,∴x=2m,
∴P1(2m,),P2(m,),
∴NP2=-=,NP1=2m-m=m,
∴NP1與NP2的積是×m=3,
故答案為:3.
點評:本題考查了對一次函數(shù)圖象上點的坐標特征及其應(yīng)用的運用,關(guān)鍵是根據(jù)N的坐標求出P1、P2的坐標,主要考查學生運用性質(zhì)進行推理的能力,題目比較典型,有一定的難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
和一次函數(shù)y=2x-b圖象都經(jīng)過點A(1,1)
(1)求反比例函數(shù)、一次函數(shù)的表達式;
(2)如圖,已知點B在第三象限,且同時在上述兩個函數(shù)的圖象上,求點B的坐標;
(3)在x軸上存在點P,使△AOP為等腰三角形,把符合條件的P點坐標直接寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若正比例函數(shù)y=kx經(jīng)過點(2,-1),則它與反比例函數(shù)y=
k
x
的圖象的兩個交點分別在(  )
A、第一、二象限
B、第二、四象限
C、第一、三象限
D、第三、四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
k
x
的圖象在第二、第四象限內(nèi),函數(shù)圖象上有兩個點A(-2,y1)、B(5,y2),則y1與y2的大小關(guān)系為( 。
A、y1>y2
B、y1=y2
C、y1<y2
D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)二次函數(shù)y=ax2+bx+c的圖象如圖所示,則反比例函數(shù)y=
abx
的圖象的兩個分支分別在第
 
象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1~4所示,每個圖中的“7”字形是由若干個邊長相等的正方形拼接而成,“7”字形的一個頂點P落在反比例函數(shù)y=
1
x
的圖象上,另“7”字形有兩個頂點落在x軸上,一個頂點落在y軸上.
(1)圖1中的每一個小正方形的面積是
1
3
1
3
;
(2)按照圖1→圖2→圖→圖4→…這樣的規(guī)律拼接下去,第n個圖形中每一個小正方形的面積是
n2+1
n(n+1)(2n+1)
n2+1
n(n+1)(2n+1)
.(用含n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案