【題目】如圖,的直徑,上一點,,延長至點,使得,過點,垂足的延長線上,連接.

1)求證:的切線;

2)當時,求圖中陰影部分的面積.

【答案】(1)詳見解析;(2).

【解析】

1)連接OB,欲證的切線,即要證到∠OBE=90°,而根據(jù)等腰三角形的性質(zhì)可得到.再根據(jù)直角三角形的性質(zhì)可得到,從而得到,從而得到,然后根據(jù)切線的判定方法得出結論即可.

2)先根據(jù)已知條件求出圓的半徑,再根據(jù)扇形的面積計算公式計算出扇形OBC的面積,再算出三角形OBC的面積,則陰影部分的面積可求.

1)證明:如圖,連接

,,

.

,,

∴在中,.

∴在中,.

,即.

又∵為圓上一點,

是圓的切線.

2)解:當時,.

為圓的直徑,

.

又∵,

.

中,,即

解得.

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+2x軸交于點A,與y軸交于點B,拋物線y=﹣+bx+c經(jīng)過AB兩點.

1)求拋物線的解析式;

2)點P在拋物線上,點Q在直線AB上,當P,Q關于原點O成中心對稱時,求點Q的坐標;

3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、BM、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按如下方法,將ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點DE、F,得DEF,則下列說法正確的個數(shù)是( 。

ABCDEF是位似圖形ABCDEF是相似圖形

ABCDEF的周長比為12ABCDEF的面積比為41

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CACB5,AB6,ABy軸,垂足為A.反比例函數(shù)yx0)的圖象經(jīng)過點C,交AB于點D

1)若OA8,求k的值;

2)若CBBD,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組在測量某市建筑物CD的高度時,他們在A處測得建筑物頂部D處的仰角為49°,然后他們往CA方向后退了3.4米到達B處(CA,B在一條直線上),測得建筑物頂部D的仰角恰好為45°,請用他們測量的數(shù)據(jù)求出建筑物CD的高度.(結果精確到0.1m,參考數(shù)據(jù)sin49°≈0.75cos49°≈0.66,tan49°≈1.15).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,ECD延長線上的一點,BEAD交于點F,DECD.

(1)求證:△ABF∽△CEB;

(2)若△DEF的面積為2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線x0)經(jīng)過點A1,6)、點B2,n),點P的坐標為(t,0),且-1≤t3,則△PAB的最大面積為_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點CAB延長線上的一點,點D在⊙O上且AD=CD,∠C=30°.

1)求證:CD是⊙O的切線,

2)若⊙O的半徑為5,求 的長.

查看答案和解析>>

同步練習冊答案