【題目】如圖,在方格紙中,隨機選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,與圖中陰影部分構(gòu)成軸對稱圖形的概率是( )
A.
B.
C.
D.
【答案】C
【解析】解:∵在方格紙中,隨機選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,共有5種等可能的結(jié)果,使與圖中陰影部分構(gòu)成軸對稱圖形的有②④⑤,3種情況, ∴使與圖中陰影部分構(gòu)成軸對稱圖形的概率是:3÷5= .
故選C.
【考點精析】關(guān)于本題考查的軸對稱圖形和概率公式,需要了解兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(2,0)和(﹣3.5,0),頂點為(﹣1,4),根據(jù)圖象直接寫出下列答案.
(1)方程ax2+bx+c=0的兩個根;
(2)不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k有兩個不相等實根,則k的取值范圍是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y= x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標(biāo)是(2,0),B點坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標(biāo)及D點的坐標(biāo);
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最小?若C點存在,求出C點的坐標(biāo);若C點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=8cm,BC=16cm.點P從點A出發(fā)沿AB向點B以2cm/s的速度運動,點Q從點B出發(fā)沿BC向點C以4cm/s的速度運動.如果點P,Q分別從點A,B同時出發(fā),則秒鐘后△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,﹣1).
(1)把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標(biāo).
(2)以點B為位似中心在格紙內(nèi)畫出△A2BC2 , 且與△ABC的位似比為2:1,并寫出C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點,F(xiàn)為BC延長線上一點,CE=CF.
(1)△DCF可以看做是△BCE繞點C旋轉(zhuǎn)某個角度得到的嗎?說明理由.
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2 .
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b).把余下的部分剪拼成一個矩形(如圖).通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是( )
A. a2﹣b2=(a+b)(a﹣b) B. (a+b)2=a2+2ab+b2
C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣ab=a(a﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊正方形和一塊等腰直角三角形如圖1擺放.
(1)如果把圖1中的△BCN繞點B逆時針旋轉(zhuǎn)90°,得到圖2,則∠GBM=;
(2)將△BEF繞點B旋轉(zhuǎn).
①當(dāng)M,N分別在AD,CD上(不與A,D,C重合)時,線段AM,MN,NC之間有一個不變的相等關(guān)系式,請你寫出這個關(guān)系式:;(不用證明)
②當(dāng)點M在AD的延長線上,點N在DC的延長線時(如圖3),①中的關(guān)系式是否仍然成立?若成立,寫出你的結(jié)論,并說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com