【題目】(a+b)(a-b)+b(b-2)的計算結果是( )
A. a2-b B. a2-2 C. a2-2b D. -2b
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB的垂直平分線CP交AB于點P,且AP=2PC,現(xiàn)欲在線段AB上求作兩點D,E,使其滿足AD=DC=CE=EB,對于以下甲、乙兩種作法:
甲:分別作∠ACP、∠BCP的平分線,分別交AB于D、E,則D、E即為所求;
乙:分別作AC、BC的垂直平分線,分別交AB于D、E,則D、E兩點即為所求.
下列說法正確的是( )
A.甲、乙都正確
B.甲、乙都錯誤
C.甲正確,乙錯誤
D.甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】投擲一枚普通的正方體骰子24次。
(1)你認為下列四種說法哪種是正確的?①出現(xiàn)1點的概率等于出現(xiàn)3點的概率;
②投擲24次,2點一定會出現(xiàn)4次;
③投擲前默念幾次“出現(xiàn)4點”,投擲結果出現(xiàn)4點的可能性就會加大;
④連續(xù)投擲6次,出現(xiàn)的點數(shù)之和不可能等于37。
(2)求出現(xiàn)5點的概率;
(3)出現(xiàn)6點大約有多少次?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一組實數(shù), , , , 1+ , ,
(1)將它們分類,填在相應的括號內:
有理數(shù){ … };
無理數(shù){ …};
(2)請你選出2個有理數(shù)和2個無理數(shù), 再用 “+,-,×,÷” 中的3種不同的運算符號將選出的4個數(shù)進行運算(可以用括號), 使得運算的結果是一個正整數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識遷移
我們知道,函數(shù)的圖像是由二次函數(shù)的圖像向右平移m個單位,再向上平移n個單位得到.類似地,函數(shù)的圖像是由反比例函數(shù)的圖像向右平移m個單位,再向上平移n個單位得到,其對稱中心坐標為(m,n).
理解應用
函數(shù)的圖像可以由函數(shù)的圖像向右平移 個單位,再向上平移 個單位得到,其對稱中心坐標為 .
靈活運用
如圖,在平面直角坐標系xOy中,請根據(jù)所給的的圖像畫出函數(shù)的圖像,并根據(jù)該圖像指出,當x在什么范圍內變化時,≥?
實際應用
某老師對一位學生的學習情況進行跟蹤研究.假設剛學完新知識時的記憶存留量為1.新知識學習后經過的時間為x,發(fā)現(xiàn)該生的記憶存留量隨x變化的函數(shù)關系為;若在(≥4)時進行一次復習,發(fā)現(xiàn)他復習后的記憶存留量是復習前的2倍(復習時間忽略不計),且復習后的記憶存量隨x變化的函數(shù)關系為.如果記憶存留量為時是復習的“最佳時機點”,且他第一次復習是在“最佳時機點”進行的,那么當x為何值時,是他第二次復習的“最佳時機點”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題引入:
(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC= (用α表示);如圖②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC= (用α表示)
拓展研究:
(2)如圖③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC= (用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列真命題中,逆命題是假命題的是( )
A. 等腰三角形的兩底角相等 B. 全等三角形的三組對應邊分別相等
C. 若a=b,則a2=b2 D. 若a2>b2,則|a|>|b|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com