如圖①,P是△ABC邊AC上的動點,以P為頂點作矩形PDEF,頂點D,E在邊BC上,頂點F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a , h,且是關于x的一元二次方程的兩個實數根,設過D, E,F三點的⊙O的面積為,矩形PDEF的面積為
(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;
(2)求的最小值;
(3)當的值最小時,過點A作BC的平行線交直線BP與Q,這時線段AQ的長與m , n , k的取值是否有關?請說明理由。(11分)
(1)略
(2)
(3)線段AQ的長與m,n,k的取值有關
解析:解:解法一:
(1)據題意,∵a+h=.
∴所求正方形與矩形的面積之比:
1分
由知同號,
2分
(說明:此處未得出只扣1分,不再影響下面評分)
3分
即正方形與矩形的面積之比不小于4.
(2)∵∠FED=90º,∴DF為⊙O的直徑.
∴⊙O的面積為:. 4分
矩形PDEF的面積:.
∴面積之比: 設
,
,即時(EF=DE), 的最小值為 7分
(3)當的值最小時,這時矩形PDEF的四邊相等為正方形.
過B點過BM⊥AQ,M為垂足,BM交直線PF于N點,設FP= e,
∵BN∥FE,NF∥BE,∴BN=EF,∴BN =FP =e.
由BC∥MQ,得:BM =AG =h.
∵AQ∥BC, PF∥BC, ∴AQ∥FP,
∴△FBP∽△ABQ. 8分 (說明:此處有多種相似關系可用,要同等分步驟評分)
∴,……9分
∴.∴……10分
……11分
∴線段AQ的長與m,n,k的取值有關. (解題過程敘述基本清楚即可)
解法二:
(1)∵a,h為線段長,即a,h都大于0,
∴ah>0…………1分(說明:此處未得出只扣1分,再不影響下面評分)
∵(a-h)2≥0,當a=h時等號成立.
故,(a-h)2=(a+h)2-4a h≥0. 2分
∴(a+h)2≥4a h,
∴≥4.(﹡) 3分
這就證得≥4.(敘述基本明晰即可)
(2)設矩形PDEF的邊PD=x,DE=y,則⊙O的直徑為 .
S⊙O=…………4分, S矩形PDEF=xy
=
= 6分
由(1)(*), .
.
∴的最小值是 7分
(3)當的值最小時,
這時矩形PDEF的四邊相等為正方形. ∴EF=PF.作AG⊥BC,G為垂足.
∵△AGB∽△FEB,∴.……8分
∵△AQB∽△FPB, ,……9分
∴=.
而 EF=PF,∴AG=AQ=h, ……………10分
∴AG=h=,
或者AG=h= 11分
∴線段AQ的長與m,n,k的取值有關. (解題過程敘述基本清楚即可)
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
OA′ |
OA |
OB′ |
OB |
OC′ |
OC |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com