【題目】如圖,是二次函數(shù)y=ax2+bx+c的圖象,對(duì)下列結(jié)論①ab>0,②abc>0,③ <1,其中錯(cuò)誤的個(gè)數(shù)是(
A.3
B.2
C.1
D.0

【答案】C
【解析】解:∵拋物線的開口向上, ∴a>0,
∵對(duì)稱軸在y軸的右側(cè),
∴b<0,
∴ab<0,故①錯(cuò)誤;
∵拋物線和y軸的負(fù)半軸相交,
∴c<0,
∴abc>0,故②正確;
∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,
<1,故③正確;
故選C.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)AO,B表示的數(shù)分別為60,-4,動(dòng)點(diǎn)PA出發(fā),以每秒6個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).

1)當(dāng)點(diǎn)P到點(diǎn)A的距離與點(diǎn)P到點(diǎn)B的距離相等時(shí),點(diǎn)P在數(shù)軸上表示的數(shù)是

2)另一動(dòng)點(diǎn)RB出發(fā),以每秒4個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、R同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少時(shí)間追上點(diǎn)R?

3)若MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若發(fā)生變化,請(qǐng)你說明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線y=x+1與拋物線y=2x2相交于A、B兩點(diǎn),與y軸交于點(diǎn)M,M、N關(guān)于x軸對(duì)稱,連接AN、BN.

(1)①求A、B的坐標(biāo);②求證:∠ANM=∠BNM;
(2)如圖2,將題中直線y=x+1變?yōu)閥=kx+b(b>0),拋物線y=2x2變?yōu)閥=ax2(a>0),其他條件不變,那么∠ANM=∠BNM是否仍然成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市雷雷服飾有限公司生產(chǎn)了一款夏季服裝,通過實(shí)體商店和網(wǎng)上商店兩種途徑進(jìn)行銷售,銷售一段時(shí)間后,該公司對(duì)這種商品的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查,其中實(shí)體商店的日銷售量y1(百件)與時(shí)間t(t為整數(shù),單位:天)的部分對(duì)應(yīng)值如下表所示,網(wǎng)上商店的日銷售量y2(百件)與時(shí)間t(t為整數(shù),單位:天)的部分對(duì)應(yīng)值如圖所示.

時(shí)間t(天)

0

5

10

15

20

25

30

日銷售量
y1(百件)

0

25

40

45

40

25

0


(1)請(qǐng)你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映y1與t的變化規(guī)律,并求出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;
(2)求y2與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在跟蹤調(diào)查的30天中,設(shè)實(shí)體商店和網(wǎng)上商店的日銷售總量為y(百件),求y與t的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),日銷售總量y達(dá)到最大,并求出此時(shí)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy,雙曲線y(x>0)與直線ykxk的交點(diǎn)為點(diǎn)A(m,2).

(1) k的值;

(2) 當(dāng)x>0時(shí),直接寫出不等式kx-k ≤的解集:_ ;

(3) 設(shè)直線ykxky軸交于點(diǎn)B,若Cx軸上一點(diǎn),且滿足ABC的面積是4,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x-3(k1>0)的圖象與x軸、y軸分別交于A,B兩點(diǎn),

與反比例函數(shù)y=(k2>0)的圖象交于C,D兩點(diǎn),作CE⊥y軸,垂足為點(diǎn)E,作DF⊥y軸,垂足為點(diǎn)F,已知CE=1.

(1) ①直接寫出點(diǎn)C的坐標(biāo) (k1來表示)

②k2﹣k1=   

(2) BAC的中點(diǎn),求反比例函數(shù)的表達(dá)式;

(3) (2)的條件下,設(shè)點(diǎn)Mx軸負(fù)半軸上一點(diǎn),將線段MF繞點(diǎn)M按順時(shí)針或逆時(shí)針方向旋轉(zhuǎn)90°得到線段MN,當(dāng)點(diǎn)M滑動(dòng)時(shí),點(diǎn)N能否在反比例函數(shù)的圖象上?如果能,求出點(diǎn)N的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,高速公路的同一側(cè)有A、B兩城鎮(zhèn),它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,且A′B′=8 km.

(1)要在高速公路上A′、B′之間建一個(gè)出口P,使A、B兩城鎮(zhèn)到P的距離之和最小.請(qǐng)?jiān)趫D中畫出P的位置,并作簡(jiǎn)單說明.

(2)求這個(gè)最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)Ay軸上,且點(diǎn)A坐標(biāo)為(0,4),BCx軸正半軸上,點(diǎn)CB點(diǎn)右側(cè)反比例函數(shù)x>0)的圖象分別交邊AD,CDEF,連結(jié)BF已知BC=k,AE=CFS四邊形ABFD=20,k= _________

[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5個(gè)邊長(zhǎng)為1的正方形按照如圖所示方式擺放,O1,O2,O3,O4,O5是正方形對(duì)角線的交點(diǎn),那么陰影部分面積之和等于________

查看答案和解析>>

同步練習(xí)冊(cè)答案