精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在邊長為1的小正方形組成的網格中,給出了格點△ABC(頂點為網格線的交點)

(1)將△ABC先向下平移3個單位長度,再向右平移4個單位長度后得到△A1B1C1.畫出平移后的圖形;

(2)將△ABC繞點A1順時針旋轉90°后得到△A2B2C2.畫出旋轉后的圖形;

(3)借助網格,利用無刻度直尺畫出△A1B1C1的中線A1D1(畫圖中要體現找關鍵點的方法)

【答案】(1)圖形見解析(2)圖形見解析(3)見解析

【解析】

1)平移的時候找準點的平移,把三個點分別平移,然后連接起來;

2)按照題目要求,分別找出三點關于的對稱點,然后連起來

3)根據等腰三角形三線合一的性質得出結果

1)如圖1所示△A1B1C1

2)如圖1所示△A2B2C2;

3)如圖1所示,就是所求中線;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數的圖像與坐標軸交于A、BC三點,其中點A的坐標為(08),點B的坐標為(-4,0.

1)求該二次函數的表達式及點C的坐標;

2)點D的坐標為(04),點F為該二次函數在第一象限內圖像上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設平行四邊形CDEF的面積為S.

①求S的最大值;

②在點F的運動過程中,當點E落在該二次函數圖像上時,請直接寫出此時S的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A的坐標為(3,0),點C的坐標為(04),OABC為矩形,反比例函數 的圖象過AB的中點D,且和BC相交于點E,F為第一象限的點,AF12,CF13

1)求反比例函數和直線OE的函數解析式;

2)求四邊形OAFC的面積?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在ADBC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:HE=HF;EC平分DCH;線段BF的取值范圍為3≤BF≤4;當點H與點A重合時,EF=2.以上結論中,你認為正確的有(  )個.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經過A10)、B4,0)、C03)三點.

1)求該拋物線的解析式;

2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最。咳舸嬖,求出四邊形PAOC周長的最小值;若不存在,請說明理由.

3)在(2)的條件下,點Q是線段OB上一動點,當△BPQ與△BAC相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖1,△ABC中,ABACBC6,BE為中線,點DBC邊上一點;BD2CD,DFBE于點F,EHBC于點H

(1)CH的長為_____;

(2)BF·BE的值:

(3)如圖2,連接FC,求證:∠EFC=∠ABC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數據:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國家為了實現2020年全面脫貧目標,實施“精準扶貧”戰(zhàn)略,采取異地搬遷,產業(yè)扶持等措施.使貧困戶的生活條件得到改善,生活質量明顯提高.某旗縣為了全面了解貧困縣對扶貧工作的滿意度情況,進行隨機抽樣調查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據調查數據繪制成圖1和圖2的統(tǒng)計圖(不完整).

根據以上信息,解答下列問題:

(1)將圖1補充完整;

(2)通過分析,貧困戶對扶貧工作的滿意度(A、B、C類視為滿意)是  ;

(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機抽取兩戶進行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩座建筑物的水平距離BC40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結果保留小數點后一位).

參考數據sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,1.732.

查看答案和解析>>

同步練習冊答案