(2013•東城區(qū)二模)閱讀并回答問題:
數(shù)學(xué)課上,探討角平分線的作法時(shí),李老師用直尺和圓規(guī)作角平分線,方法如下:
作法:①在OA,OB上分別截取OD,OE,使OD=OE.
②分別以D,E為圓心,以大于
1
2
DE
為半徑作弧,
兩弧在∠AOB內(nèi)交于點(diǎn)C.
③作射線OC,則OC就是∠AOB的平分線
小聰只帶了直角三角板,他發(fā)現(xiàn)利用三角板也可以作角平分線,方法如下:
作法:①利用三角板上的刻度,在OA,OB上分別截取OM,ON,使OM=ON.
②分別過以M,N為OM,ON的垂線,交于點(diǎn)P.
③作射線OP,則OP就是∠AOB的平分
線.
小穎的身邊只有刻度尺,經(jīng)過嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.根據(jù)以上情境,解決下列問題:
(1)小聰?shù)淖鞣ㄕ_嗎?請(qǐng)說明理由;
(2)請(qǐng)你幫小穎設(shè)計(jì)用刻度尺作∠AOB平分線的方法.(要求:不與小聰方法相同,請(qǐng)畫出圖形,并寫出畫圖的方法,不必證明).
分析:(1)根據(jù)HL可證Rt△OMP≌Rt△ONP,再根據(jù)全等三角形的性質(zhì)即可作出判斷;
(2)根據(jù)用刻度尺作角平分線的方法作出圖形,寫出作圖步驟即可.
解答:解:(1)小聰?shù)淖鞣ㄕ_.理由如下:
∵PM⊥OM,PN⊥ON,
∴∠OMP=∠ONP=90°.
在Rt△OMP和Rt△ONP中,
∵OP=OP,OM=ON,
∴Rt△OMP≌Rt△ONP(HL),
∴∠MOP=∠NOP.
∴OP平分∠AOB;

(2)如圖所示.


步驟:①利用刻度尺在OA、OB上分別截取OG=OH.
②連接GH,利用刻度尺作出GH的中點(diǎn)Q.
③作射線OQ.
則OQ為∠AOB的平分線.
點(diǎn)評(píng):本題考查了用刻度尺作角平分線的方法,全等三角形的判定與性質(zhì),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)已知在Rt△ABC中,∠C=90°,∠A=α,AC=3,那么AB的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過M作ME⊥CD于點(diǎn)E.
(1)求證:AM=2CM;
(2)若∠1=∠2,CD=2
3
,求ME的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)拋擲一枚質(zhì)地均勻的正方體骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù),擲得朝上一面的點(diǎn)數(shù)為3的倍數(shù)的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)如圖,在平面直角坐標(biāo)系中,已知⊙O的半徑為1,動(dòng)直線AB與x軸交于點(diǎn)P(x,0),直線AB與x軸正方向夾角為45°,若直線AB與⊙O有公共點(diǎn),則x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)分解因式:mn2+4mn+4m=
m(n+2)2
m(n+2)2

查看答案和解析>>

同步練習(xí)冊(cè)答案