【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1 , x2 , 其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】D
【解析】解:由拋物線的開(kāi)口向下知a<0, 與y軸的交點(diǎn)為在y軸的正半軸上,得c>0,
對(duì)稱軸為x= <1,
∵a<0,
∴2a+b<0,
而拋物線與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac>0,
當(dāng)x=2時(shí),y=4a+2b+c<0,
當(dāng)x=1時(shí),a+b+c=2.
>2,
∴4ac﹣b2<8a,
∴b2+8a>4ac,
∵①a+b+c=2,則2a+2b+2c=4,
②4a+2b+c<0,
③a﹣b+c<0.
由①,③得到2a+2c<2,
由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,
上面兩個(gè)相加得到6a<﹣6,
∴a<﹣1.
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c),以及對(duì)拋物線與坐標(biāo)軸的交點(diǎn)的理解,了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某漁船在海面上朝正西方向以20海里/時(shí)勻速航行,在A處觀測(cè)到燈塔C在北偏西60°方向上,航行1小時(shí)到達(dá)B處,此時(shí)觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時(shí)漁船到燈塔的距離(結(jié)果精確到1海里,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,有一個(gè)菱形BFDE(點(diǎn)E、F分別在線段AB、CD上),記它們的面積分別為SABCD和SBFDE . 現(xiàn)給出下列命題:
(i)若 = ,則tan∠EDF=
(ii)若DE2=BDEF,則DF=2AD
那么,下面判斷正確的是( )

A.①正確,②正確
B.①正確,②錯(cuò)誤
C.①錯(cuò)誤,②正確
D.①錯(cuò)誤,②錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

我們已經(jīng)學(xué)習(xí)的直角三角形知識(shí)包括:勾股定理,30°、45°特殊角的直角三角形的邊之間的關(guān)系等,在解決初中數(shù)學(xué)問(wèn)題上起到重要作用,銳角三角函數(shù)是另一個(gè)研究直角三角形中邊角間關(guān)系的知識(shí),通過(guò)銳角三角函數(shù)也可以幫助解決數(shù)學(xué)問(wèn)題.

閱讀下列材料,完成習(xí)題:

如圖1,在RtABC中,∠C=90°,我們把銳角A的對(duì)邊與斜邊的比叫做∠A的正弦(sine),記作sinA,即sinA=

例如:a=3c=7,則sinA=

問(wèn)題:在RtABC中,∠C=90°

1)如圖2,BC=5,AB=8,求sinA的值.

2)如圖3,當(dāng)∠A=45°時(shí),求sinB的值.

3AC=2,sinB=,求BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是角平分線,E是AB上一點(diǎn),AE=AC,EFBC交AC于F.下列結(jié)論①△ADC≌△ADE;EC平分DEF;AD垂直平分CE.其中結(jié)論正確的有( )個(gè)

A. 1 B. 2 C. 3 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圣誕節(jié)來(lái)臨之際,某兒童商場(chǎng)用2800元購(gòu)進(jìn)了一批玩具,上市后很快售完,商場(chǎng)又用7200元購(gòu)進(jìn)第二批這種玩具,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每個(gè)玩具進(jìn)價(jià)多了4元.

(1)該商場(chǎng)兩次共購(gòu)進(jìn)這批玩具多少個(gè)?

(2)如果這兩批玩具每個(gè)的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每個(gè)玩具的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG//CF;⑤S△FGC=3.6.其中正確結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線的表達(dá)式為,點(diǎn)A,B的坐標(biāo)分別為

(1,0),(0,2),直線AB與直線相交于點(diǎn)P

(1)求直線AB的表達(dá)式;

(2)求點(diǎn)P的坐標(biāo);

(3)若直線上存在一點(diǎn)C,使得APC的面積是APO的面積的2倍,直接寫出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在研究性學(xué)習(xí)活動(dòng)中,對(duì)自己家所在的小區(qū)進(jìn)行調(diào)查后發(fā)現(xiàn),小區(qū)汽車入口寬AB為3.2m,在入口的一側(cè)安裝了停止桿CD,其中AE為支架.當(dāng)停止桿仰起并與地面成60°角時(shí),停止桿的端點(diǎn)C恰好與地面接觸.此時(shí)CA為0.7m.在此狀態(tài)下,若一輛貨車高3m,寬2.5m,入口兩側(cè)不能通車,那么這輛貨車在不碰桿的情況下,能從入口內(nèi)通過(guò)嗎?請(qǐng)你通過(guò)估算說(shuō)明.(參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

同步練習(xí)冊(cè)答案