【題目】如圖,∠AOB=30°,內(nèi)有一點(diǎn)P且OP=5,若M、N為邊OA、OB上兩動(dòng)點(diǎn),那么△PMN的周長(zhǎng)最小為__________.
【答案】5
【解析】試題解析:作點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)D,作點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)E,連接DE交OA于M,交OB于N,連接PM,PN,則此時(shí)△PMN的周長(zhǎng)最小.
連接OD,OE,
∵P、D關(guān)于OA對(duì)稱,
∴OD=OP,PM=DM,
∵P、E關(guān)于OB對(duì)稱,
∴OE=OP,PN=EN,
∴OD=OE=OP=5,
∵P、D關(guān)于OA對(duì)稱,
∴OA⊥PD,
∵OD=OP,
∴∠DOA=∠POA,
同理∠POB=∠EOB,
∴∠DOE=2∠AOB=2×30°=60°,
∵OD=OE=5,
∴△DOE是等邊三角形,
∴DE=5,
即△PMN的周長(zhǎng)是PM+MN+PN=DM+MN+EN=DE=5.
故答案為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點(diǎn)A(﹣3,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),頂點(diǎn)為點(diǎn)D,對(duì)稱軸DE交x軸于點(diǎn)E,連接AD,AC,DC.
(1)求拋物線的函數(shù)表達(dá)式.
(2)判斷△ADC的形狀,并說(shuō)明理由.
(3)對(duì)稱軸DE上是否存在點(diǎn)P,使點(diǎn)P到直線AD的距離與到x軸的距離相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的兩邊長(zhǎng)是6cm和3cm,那么它的周長(zhǎng)是
A. 9cm B. 12 cm C. 12 cm或15 cm D. 15 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù)2,﹣4,x,6,﹣8的眾數(shù)為6,則這組數(shù)據(jù)的中位數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2=交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2,即通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)將(2)、(3)、(4)補(bǔ)充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.
雙曲線y4=如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo)
觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為 ;
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,MP和NQ分別垂直平分AB和AC.
(1)若△APQ的周長(zhǎng)為12,求BC的長(zhǎng);
(2)∠BAC=105°,求∠PAQ的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com