【題目】如圖,在矩形中, ,為中點(diǎn),連接. 動(dòng)點(diǎn)從點(diǎn)出發(fā)沿邊向點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿邊向點(diǎn)運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),速度都是每秒1個(gè)單位長(zhǎng)度,連接,設(shè)運(yùn)動(dòng)時(shí)間為(秒). 則_____時(shí),為直角三角形
【答案】或
【解析】
△CMN是直角三角形時(shí),有三種情況,一是∠CMN=90°,二是∠MNC=90°,三是∠MCN=90°,然后進(jìn)行分類討論求出t的值.
解:
過點(diǎn)N作OA的垂線,交OA于點(diǎn)F,交CH于點(diǎn)E,如圖1,
∵B點(diǎn)是CH的中點(diǎn),
∴BH=CH=OA=6,
∵AH=OC=8,
∴由勾股定理可求:AB=10,
∵AN=t,
∴BN=10-t,
∵NE∥AH,
∴△BEN∽△BHA,
∴ ,
∴ ,
∴EN=
∴FN=8-EN=,
當(dāng)∠CMN=90°,
由勾股定理可求:AF=,
∵OM=t,
∴AM=12-t,
∴MF=AM-AF=12-t- =12-,
∵∠OCM+∠CMO=90°,∠CMO+∠FMN=90°,
∴∠OCM=∠FMN,
∵∠O=∠NFM=90°,
∴△COM∽△MFN,
∴,
∴ ,
∴t=,
當(dāng)∠MNC=90°,
FN=
∴EN=
∵MF=12-
∴CE=OF=OM+MF=12-
∵∠MNF+∠CNE=90°,
∠ECN+∠CNE=90°,
∴∠MNF=∠ECN,
∵∠CEN=∠NFM=90°,
∴△CEN∽△NFM,
∴ ,
∴ ,
∴,
∵0<t<5,
∴;
當(dāng)∠NCM=90°,
由題意知:此情況不存在,
綜上所述,△CMN為直角三角形時(shí),t=或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c經(jīng)過A(﹣2,0)、B(8,0)、C(0,4)三點(diǎn),頂點(diǎn)為D,連結(jié)AC,BC.
(1)求拋物線的函數(shù)表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)判斷三角形ABC的形狀,并說明理由;
(3)如圖2,點(diǎn)P是該拋物線在第一象限內(nèi)上的一點(diǎn).
①過點(diǎn)P作y軸的平行線交BC于點(diǎn)E,若CP=CE,求點(diǎn)P的坐標(biāo);
②連結(jié)AP交BC于點(diǎn)F,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,A是反比例函數(shù)y=(x>0)圖象上一點(diǎn),B是y軸正半軸上一點(diǎn),以OA,AB為鄰邊作ABCO.若點(diǎn)C及BC中點(diǎn)D都在反比例函數(shù)y=(k<0,x<0)圖象上,則k的值為( 。
A. ﹣3B. ﹣4C. ﹣6D. ﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3.
(1)在下面的直角坐標(biāo)系中畫出函數(shù)的圖象;
(2)寫出函數(shù)的3條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:
①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有( 。﹤(gè).
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問題:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值為________________;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出函數(shù)的大致圖象;
(4)結(jié)合函數(shù)圖象,請(qǐng)寫出函數(shù)的一條性質(zhì):______________________.
(5)解決問題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+mx+m﹣3=0.
(1)若該方程的一個(gè)根為2,求m的值及方程的另一個(gè)根;
(2)求證:不論m取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,∠BAC=90°,AB=AC,點(diǎn)E是邊AD上一點(diǎn),且BE=BC,BE交AC于點(diǎn)F,過點(diǎn)C作BE的垂線,垂足為點(diǎn)O,與AD交于點(diǎn)G.
(1)若AB=,求AE的長(zhǎng);
(2)求證;BF=CO+EO.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com