【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
填空:①∠AEB的度數(shù)為 ;②線段AD,BE之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列表格的對應(yīng)值,判斷ax2+bx+c=0 (a≠0,a,b,c為常數(shù))的一個(gè)解x的取值范圍是_____
x | 3.23 | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖(一),△ABC的周長為,內(nèi)切圓O的半徑為r,連結(jié)OA、OB、OC,△ABC被劃分為三個(gè)小三角形,用S△ABC表示△ABC的面積
∵ S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=,S△OBC=,S△OCA =
∴S△ABC=++= (可作為三角形內(nèi)切圓半徑公式)
(1)理解與應(yīng)用:利用公式計(jì)算邊長分為5、12、13的三角形內(nèi)切圓半徑;
(2)類比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長分別為a、b、c、d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程mx2﹣2mx+m+n=0有兩個(gè)實(shí)數(shù)根.
(1)求實(shí)數(shù)m,n需滿足的條件;
(2)寫出一組滿足條件的m,n的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上一點(diǎn) A,一只螞蟻從 A 出發(fā)爬了 4 個(gè)單位長度到了原點(diǎn),則點(diǎn) A 所表 示的數(shù)是( )
A. 4 B. ﹣4 C. ±8 D. ±4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 要了解我市九年級學(xué)生的身高,應(yīng)采用普查的方式;
B. 若甲隊(duì)成績的方差為5,乙隊(duì)成績的方差為3,則甲隊(duì)成績不如乙隊(duì)成績穩(wěn)定;
C. 如果明天下雨的概率是99%,那么明天一定會(huì)下雨;
D. 一組數(shù)據(jù)4,6,7,6,7,8,9的中位數(shù)和眾數(shù)都是6.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com