【題目】如圖,已知拋物線(xiàn)y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),AB=4,交y軸于點(diǎn)C,對(duì)稱(chēng)軸是直線(xiàn)x=1.
(1)求拋物線(xiàn)的解析式及點(diǎn)C的坐標(biāo);
(2)連接BC,E是線(xiàn)段OC上一點(diǎn),E關(guān)于直線(xiàn)x=1的對(duì)稱(chēng)點(diǎn)F正好落在BC上,求點(diǎn)F的坐標(biāo);
(3)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),過(guò)M作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)N,交線(xiàn)段BC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①若△AOC與△BMN相似,請(qǐng)直接寫(xiě)出t的值;
②△BOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2+2x+3,C點(diǎn)坐標(biāo)為(0,3);(2)F(2,1);(3)①t=1;②當(dāng)t或秒時(shí),△BOQ為等腰三角形
【解析】
(1)將A、B關(guān)坐標(biāo)代入y=﹣x2+bx+c中,即可求解;
(2)確定直線(xiàn)BC的解析式為y=﹣x+3,根據(jù)點(diǎn)E、F關(guān)于直線(xiàn)x=1對(duì)稱(chēng),即可求解;
(3)①△AOC與△BMN相似,則,即可求解;②分OQ=BQ、BO=BQ、OQ=OB三種情況,分別求解即可.
解:(1))∵點(diǎn)A、B關(guān)于直線(xiàn)x=1對(duì)稱(chēng),AB=4,
∴A(﹣1,0),B(3,0),
代入y=﹣x2+bx+c中,得:,解得,
∴拋物線(xiàn)的解析式為y=﹣x2+2x+3,
∴C點(diǎn)坐標(biāo)為(0,3);
(2)設(shè)直線(xiàn)BC的解析式為y=mx+n,
則有:,解得,
∴直線(xiàn)BC的解析式為y=﹣x+3,
∵點(diǎn)E、F關(guān)于直線(xiàn)x=1對(duì)稱(chēng),
又E到對(duì)稱(chēng)軸的距離為1,
∴EF=2,
∴F點(diǎn)的橫坐標(biāo)為2,將x=2代入y=﹣x+3中,
得:y=﹣2+3=1,
∴F(2,1);
(3)①如下圖,連接BC交MN于Q,
MN=﹣4t2+4t+3,MB=3﹣2t,
△AOC與△BMN相似,則,
即:,
解得:t或或1(舍去、),
故:t=1;
②∵M(2t,0),MN⊥x軸,∴Q(2t,3﹣2t),
∵△BOQ為等腰三角形,∴分三種情況討論,
第一種,當(dāng)OQ=BQ時(shí),
∵QM⊥OB
∴OM=MB
∴2t=3﹣2t
∴t;
第二種,當(dāng)BO=BQ時(shí),在Rt△BMQ中
∵∠OBQ=45°,
∴BQ,
∴BO,
即3,
∴t;
第三種,當(dāng)OQ=OB時(shí),
則點(diǎn)Q、C重合,此時(shí)t=0
而t>0,故不符合題意
綜上述,當(dāng)t或秒時(shí),△BOQ為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( 。
A.△ABE≌△AGFB.AE=AFC.AE=EFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn),過(guò)點(diǎn)作軸,垂足為點(diǎn),且。
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式的解集;
(3)若是反比例函數(shù)圖象上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=-x+2分別交x軸、y軸于點(diǎn)A,B,點(diǎn)D在BA的延長(zhǎng)線(xiàn)上,OD的垂直平分線(xiàn)交線(xiàn)段AB于點(diǎn)C.若△OBC和△OAD的周長(zhǎng)相等,則OD的長(zhǎng)是( )
A. 2B. 2C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=-x2+4x-1與y軸交于點(diǎn)C,CD∥x軸交拋物線(xiàn)于另一點(diǎn)D,AB∥x軸交拋物線(xiàn)于點(diǎn)A,B,點(diǎn)A在點(diǎn)B的左側(cè),且兩點(diǎn)均在第一象限,BH⊥CD于點(diǎn)H.設(shè)點(diǎn)A的橫坐標(biāo)為m.
(1)當(dāng)m=1時(shí),求AB的長(zhǎng).
(2)若AH=(CH-DH),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,A(-4,4),B(-4,-2),C(-2,2).
(1)請(qǐng)畫(huà)出將△ABC向右平移8個(gè)單位長(zhǎng)度后的△A1BlC1;
(2)以O(shè)為位似中心,將△A1BlC1縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趛軸右側(cè)畫(huà)出△A2B2C2.
(3)畫(huà)出一個(gè)三角形,使它與△ABC相似,且相似比是無(wú)理數(shù),并寫(xiě)出所畫(huà)三角形與△ABC的相似比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,、相交于點(diǎn),點(diǎn)是的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),,則下列結(jié)論:①;②;③;④,其中一定正確的是( ).
A.①②③④B.①②C.②③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)一種產(chǎn)品2017年的產(chǎn)量是100萬(wàn)件,計(jì)劃2019年產(chǎn)量達(dá)到121萬(wàn)件.假設(shè)2017年到2019年這種產(chǎn)品產(chǎn)量的年增長(zhǎng)率相同.
(1)求2017年到2019年這種產(chǎn)品產(chǎn)量的年增長(zhǎng)率;
(2)2018年這種產(chǎn)品的產(chǎn)量應(yīng)達(dá)到多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,AD=BD,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACE,使點(diǎn)C落在直線(xiàn)BD上.
(1)求證:AE∥BC;
(2)連接DE,判斷四邊形ABDE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com