【題目】如圖,的直徑,的中點(diǎn),連接交弦于點(diǎn).過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn).

(1)求證:的切線;

(2)連接,若,求四邊形的面積.

【答案】(1)證明見(jiàn)解析(2)8

【解析】

試題分析:(1)欲證明DE是O的切線,只要證明ACOD,EDOD即可.

(2)由AFO≌△CFD(SAS),推出SAFO=SCFD,推出S四邊形ACDE=SODE,求出ODE的面積即可.

試題解析:(1)D為的中點(diǎn),

ODAC,

ACDE,

ODDE,

DE是O的切線;

(2)解:連接DC,

D為的中點(diǎn),

ODAC,AF=CF,

ACDE,且OA=AE,

F為OD的中點(diǎn),即OF=FD,

AFO和CFD中,

∴△AFO≌△CFD(SAS),

SAFO=SCFD

S四邊形ACDE=SODE

在RtODE中,OD=OA=AE=4,

OE=8,

DE==4

S四邊形ACDE=SODE=×OD×DE=×4×4=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:﹣2x2y+16xy﹣32y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自從湖南與歐洲的湘歐快線開(kāi)通后,我省與歐洲各國(guó)經(jīng)貿(mào)往來(lái)日益頻繁,某歐洲客商準(zhǔn)備在湖南采購(gòu)一批特色商品,經(jīng)調(diào)查,用16000元采購(gòu)型商品的件數(shù)是用7500元采購(gòu)型商品的件數(shù)的2倍,一件型商品的進(jìn)價(jià)比一件型商品的進(jìn)價(jià)多10元.

(1)求一件型商品的進(jìn)價(jià)分別為多少元?

(2)若該歐洲客商購(gòu)進(jìn)型商品共250件進(jìn)行試銷(xiāo),其中型商品的件數(shù)不大于型的件數(shù),且不小于80件,已知型商品的售價(jià)為240元/件,型商品的售價(jià)為220元/件,且全部售出,設(shè)購(gòu)進(jìn)型商品件,求該客商銷(xiāo)售這批商品的利潤(rùn)y之間的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

(3)在(2)的條件下,歐洲客商決定在試銷(xiāo)活動(dòng)中每售出一件型商品,就從一件型商品的利潤(rùn)中捐獻(xiàn)慈善資金元,求該客商售完所有商品并捐獻(xiàn)資金后獲得的最大收益.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題有(

兩點(diǎn)之間線段最短;到角的兩邊距離相等的點(diǎn)在角的平分線上;

過(guò)一點(diǎn)有且只有一條直線與已知直線平行;垂直于同一直線的兩條直線平行;

的弦交于點(diǎn),則.

A.4個(gè) B.3個(gè) C. 2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題探究發(fā)現(xiàn)
(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
填空:①∠AEB的度數(shù)為;②線段AD,BE之間的數(shù)量關(guān)系為

(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線過(guò)點(diǎn),,與軸交于點(diǎn).

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)在拋物線的對(duì)稱軸上,求的周長(zhǎng)的最小值;

(3)在拋物線的對(duì)稱軸上是否存在點(diǎn),使是直角三角形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“平行于同一條直線的兩條直線互相平行”的題設(shè)是_______________,結(jié)論是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,四邊形ABCD是長(zhǎng)方形,F(xiàn)是DA延長(zhǎng)線上一點(diǎn),CF交AB于點(diǎn)E,G是CF上一點(diǎn),且AG=AC,∠ACG=2∠GAF.

(1)若∠ACB=60°,求∠ECB的度數(shù).
(2)若AF=12cm,AG=6.5cm,求△AEF中EF邊上的高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,張老師出示了問(wèn)題:如圖1,、是四邊形的對(duì)角線,若,則線段,三者之間有何等量關(guān)系?

經(jīng)過(guò)思考,小明展示了一種正確的思路:如圖2,延長(zhǎng),使,連接,證得,從而容易證明是等邊三角形,故,所以.

小亮展示了另一種正確的思路:如圖3,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),使重合,從而容易證明是等比三角形,故,所以.

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖4,如果把改為,其它條件不變,那么線段,三者之間有何等量關(guān)系?針對(duì)小穎提出的問(wèn)題,請(qǐng)你寫(xiě)出結(jié)論,并給出證明.

(2)小華提出:如圖5,如果把改為,其它條件不變,那么線段,,三者之間有何等量關(guān)系?針對(duì)小華提出的問(wèn)題,請(qǐng)你寫(xiě)出結(jié)論,不用證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案