如圖,△ABC中,D、E分別是AB、AC的中點,給出下列結(jié)論:
①DE∥BC;②;③;④△ADE∽△ABC.
其中正確的結(jié)論有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:若D、E是AB、AC的中點,則DE是△ABC的中位線,可根據(jù)三角形中位線定理得出的等量條件進行判斷.
解答:解:∵D、E是AB、AC的中點,
∴DE是△ABC的中位線;
∴DE∥BC,DE=BC(故①,②正確),
∵DE∥BC,
∴△ADE∽△ABC;(故④正確)
,即;(故③正確)
因此本題的四個結(jié)論都正確,
故選D.
點評:題主要考查了三角形中位線定理以及相似三角形的判定和性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案